
Report
Unravelling the Molecular
 Determinants of Bee
Sensitivity to Neonicotinoid Insecticides
Highlights
d Honeybees and bumble bees show variation in sensitivity to

different neonicotinoids

d Variation in bee sensitivity to neonicotinoids does not reside

at the target site

d Cytochrome P450s of the CYP9Q subfamily determine bee

sensitivity to neonicotinoids

d CYP9Q genes are highly expressed in beeMalpighian tubules

and the brain
Manjon et al., 2018, Current Biology 28, 1137–1143
April 2, 2018 ª 2018 The Author(s). Published by Elsevier Ltd.
https://doi.org/10.1016/j.cub.2018.02.045
Authors

Cristina Manjon, Bartlomiej J. Troczka,

Marion Zaworra, ..., Linda M. Field,

Chris Bass, Ralf Nauen

Correspondence
c.bass@exeter.ac.uk (C.B.),
ralf.nauen@bayer.com (R.N.)

In Brief

N-cyanoamidine neonicotinoid

insecticides are much less toxic to

honeybees and bumble bees than

N-nitroguanidine compounds. Manjon

et al. show that this results from

differences in their efficiency of

metabolism by cytochrome P450s of the

CYP9Q subfamily, demonstrating their

role as key determinants of bee sensitivity

to this insecticide class.

mailto:c.bass@exeter.ac.uk
mailto:ralf.nauen@bayer.com
https://doi.org/10.1016/j.cub.2018.02.045
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cub.2018.02.045&domain=pdf


Current Biology

Report
Unravelling the Molecular Determinants
of Bee Sensitivity to Neonicotinoid Insecticides
Cristina Manjon,1,5 Bartlomiej J. Troczka,2,5 Marion Zaworra,1,4,5 Katherine Beadle,3 Emma Randall,3 Gillian Hertlein,1

Kumar Saurabh Singh,3 Christoph T. Zimmer,3,6 Rafael A. Homem,2 Bettina Lueke,1 Rebecca Reid,2 Laura Kor,2

Maxie Kohler,1 Jürgen Benting,1 Martin S. Williamson,2 T.G. Emyr Davies,2 Linda M. Field,2 Chris Bass,3,7,*
and Ralf Nauen1,*
1Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, 40789 Monheim, Germany
2Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
3College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
4Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms University Bonn, 53115 Bonn, Germany
5These authors contributed equally
6Present address: Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein CH4332, Switzerland
7Lead Contact

*Correspondence: c.bass@exeter.ac.uk (C.B.), ralf.nauen@bayer.com (R.N.)
https://doi.org/10.1016/j.cub.2018.02.045
SUMMARY

The impact of neonicotinoid insecticides on the
health of bee pollinators is a topic of intensive
research and considerable current debate [1]. As
insecticides, certain neonicotinoids, i.e., N-nitrogua-
nidine compounds such as imidacloprid and thiame-
thoxam, are as intrinsically toxic to bees as to the
insect pests they target. However, this is not the
case for all neonicotinoids, with honeybees orders
of magnitude less sensitive to N-cyanoamidine com-
pounds such as thiacloprid [2]. Although previous
work has suggested that this is due to rapid meta-
bolism of these compounds [2–5], the specific
gene(s) or enzyme(s) involved remain unknown.
Here, we show that the sensitivity of the two most
economically important bee species to neonicoti-
noids is determined by cytochrome P450s of the
CYP9Q subfamily. Radioligand binding and inhibitor
assays showed that variation in honeybee sensitivity
to N-nitroguanidine and N-cyanoamidine neonicoti-
noids does not reside in differences in their affinity
for the receptor but rather in divergent metabolism
by P450s. Functional expression of the entire CYP3
clade of P450s from honeybees identified a single
P450, CYP9Q3, that metabolizes thiacloprid with
high efficiency but has little activity against imidaclo-
prid. We demonstrate that bumble bees also exhibit
profound differences in their sensitivity to different
neonicotinoids, and we identify CYP9Q4 as a func-
tional ortholog of honeybee CYP9Q3 and a keymeta-
bolic determinant of neonicotinoid sensitivity in this
species. Our results demonstrate that bee pollinators
are equipped with biochemical defense systems that
define their sensitivity to insecticides and this knowl-
edge can be leveraged to safeguard bee health.
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RESULTS AND DISCUSSION

Bees carry out vital ecosystem services by pollinating wild plants

and economically important crops but, in doing so, are exposed

to a wide variety of natural and synthetic xenobiotics (including

pesticides) [6]. Understanding the molecular defense systems

that bees use to protect themselves from these potential toxins

and their effectiveness and specificity provides important knowl-

edge that can be used to avoid negative off-target effects [7].

Previous studies have demonstrated that honeybees exhibit

marked differences in their sensitivity to different pesticides.

Indeed, certain compounds display such low acute toxicity to

bees that they are used as in-hive treatments by beekeepers

against parasitic Varroa mites [6]. This differential sensitivity ex-

tends to neonicotinoid insecticides, with honeybees exhibiting

profound differences in their sensitivity to N-nitroguanidine and

N-cyanoamidine neonicotinoids [2]. In this study, we used imida-

cloprid and thiacloprid as exemplars of each class and first

examined whether this differential sensitivity extends to bumble

bees (Bombus terrestris), the second-most economically impor-

tant bee pollinator species worldwide. In both contact and oral

bioassays, significant (> 500-fold) differences were observed

in the sensitivity of bumble bees to the two compounds (Fig-

ure 1A, Table S1). Based on these results and previous data

for honeybees [9, 10], imidacloprid is categorized as ‘‘highly

toxic’’ to both bumble bees and honeybees, according to the

U.S. Environmental Protection Agency (EPA) (Figure 1A) [8].

In contrast, thiacloprid is categorized as ‘‘slightly toxic’’ or

‘‘practically non-toxic’’ to both bee species depending on the

route of exposure (Figure 1A) [10].

The molecular basis of the differences in sensitivity of bees to

these neonicotinoids could reside in differences in their affinity

for the target site, the nicotinic acetylcholine receptor (nAChR),

or from differences in the speed and efficiency of their meta-

bolism. To examine the role of the former in intrinsic bee toler-

ance to thiacloprid, we carried out radioligand binding assays

using honeybee and bumble bee head membrane preparations,

an enriched source of nAChRs, using tritiated imidacloprid

and examined the displacement of [3H]-imidacloprid by both
pril 2, 2018 ª 2018 The Author(s). Published by Elsevier Ltd. 1137
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Figure 1. Toxicodynamics and Pharmacokinetics of Neonicotinoid Sensitivity in Two Bee Species

(A) LD50 values for imidacloprid and thiacloprid upon oral and topical application in A. mellifera and B. terrestris. Sensitivity thresholds are depicted according to

EPA toxicity ratings [8]. Data for A. mellifera is taken from [9, 10], data for B. terrestris was generated in this study. Error bars display 95% CLs (n = 4).

(B) Specific binding of thiacloprid and imidacloprid to both A. mellifera and B. terrestris nAChRs. Error bars display standard deviation (n = 3).

(C) Sensitivity of A-p-methoxy-. mellifera to imidacloprid and thiacloprid before and after pretreatment with the insecticide synergist ABT (aminobenzotriazole).

Error bars display 95% CLs (n = 3).

See also Table S1.
unlabelled imidacloprid and thiacloprid. As shown in Figure 1B,

in the case of both bee species, both imidacloprid and thiaclo-

prid bind with nM affinity, and no significant difference was

seen in the specific binding of either compound at the receptor

(IC50 of 1.2, [95% CI 0.97, 1.6] and 1.1 nM [95% CI 0.94, 1.6]

for imidacloprid and thiacloprid respectively for honeybees,

and IC50 of 0.71 [95% CI 0.62, 0.82] and 0.62 nM [95% CI

0.50, 0.77] for imidacloprid and thiacloprid for bumble bees).

This finding clearly demonstrates that the differences in bee

sensitivity to these two neonicotinoids is not a consequence of

variation in their affinity for the nAChR.

The use of insecticide synergists that inhibit insect metabolic

enzyme systems has provided evidence that one or more mem-

bers of the cytochrome P450 superfamily are responsible for the

tolerance of honeybees to thiacloprid [2]. Indeed, Iwasa et al. [2]

demonstrated that the P450 inhibitors piperonyl butoxide (PBO),

triflumizole, and propiconazole increased honeybee sensitivity

to thiacloprid by 154-, 1,141- and 559-fold, respectively, but

had almost no effect on honeybee sensitivity to imidacloprid.

To explore this further, we used 1-aminobenzotriazole (ABT), a

nonspecific suicide inhibitor of P450s that has been used widely

in mammalian systems to distinguish P450-mediated meta-

bolism from non-P450-mediated metabolism in vitro [11, 12].

Honeybees pretreated with ABT became > 170-fold more sensi-

tive to thiacloprid but only 2.7-foldmore sensitive to imidacloprid

(Figure 1C), supporting the view that P450s underlie the variation

in the sensitivity of this bee species to these two compounds.

Likewise, insecticide bioassays of bumble bees after treatment

with PBO resulted in a significant 4.2-fold increase in the sensi-

tivity of bumble bees to thiacloprid but no significant shift in

sensitivity to imidacloprid (Table S1). Thus, we demonstrate

that P450s also appear to be an important determinant of neon-

icotinoid sensitivity in bumble bees. The level of synergism we

observed in bumble bees is significantly lower than that reported

by Iwasa et al. [2] using the same inhibitor (see above); thismay in

part result from differences in methodology used (contact versus

oral insecticide bioassays) and/or differences in the ability of this

synergist to inhibit the relevant P450 enzymes.
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Insect P450 genes fall into four major clades, and enzymes

from each of these clades have been linked to insecticide resis-

tance or to the metabolism of xenobiotics [13]. However, mem-

bers of the CYP3 clade, particularly those of the CYP6 and

CYP9 families, have been most frequently linked to xenobiotic

detoxification across a range of insect species [13–15]. There-

fore, to explore which honeybee P450(s) are responsible for

thiacloprid metabolism, 27 of the 46 honeybee P450 genes,

comprising the entire CYP3 clade, were individually coex-

pressed with house fly P450 reductase (CPR) in an insect cell

line. Incubation of purified microsomal preparations containing

each P450 and CPR with thiacloprid and analysis of the metab-

olites produced by liquid chromatography tandem mass spec-

trometry (LC-MS/MS) identified a single P450, CYP9Q3, as the

highly efficient metabolizer of thiacloprid (primarily to 5-hydroxy

thiacloprid) (Figures 2A, S1, and S2). Topical bioassays of honey-

bees using 5-hydroxy thiacloprid revealed reduced toxicity of

this metabolite (LD50-value of > 100 mg/bee) relative to the parent

compound (Figure 1A). Three other P450s—CYP6AS5, CYP9Q1,

and CYP9Q2—showed weak activity against thiacloprid, but this

was at least > 10-fold lower than that seen for CYP9Q3 (Fig-

ure 2A). Repeating these assays using imidacloprid revealed

that only CYP9Q1–3 exhibit any capacity tometabolize this com-

pound but at much lower efficiency than exhibited for thiacloprid

(Figure 2A). To provide additional evidence that CYP9Q3 is the

primary honeybee P450 that confers tolerance to thiacloprid

in vivo, we created a series of transgenic Drosophila lines

expressing honeybee CYP9Q1, CYP9Q2, or CYP9Q3. Flies ex-

pressing the CYP9Q3 transgene showed a marked (> 10-fold)

and significant resistance to thiacloprid compared to control flies

of the same genetic background without the transgene in insec-

ticide bioassays (Figure 2D). Flies expressing CYP9Q1 showed

no change in sensitivity to thiacloprid compared to controls,

and flies expressing CYP9Q2 showed a significant but more

modest (3.5-fold) resistance to thiacloprid (Figure 2D). In bioas-

says using imidacloprid, no significant differences in sensitivity

were observed between flies with any of the three transgenes

and control flies consistent with the low efficiency of imidacloprid



A B

DC

Figure 2. Identification of Neonicotinoid Metabolising P450s in Honeybee and Bumble Bee

(A and C) (A) Thiacloprid and imidacloprid hydroxylation by recombinantly expressed P450s of the A. melliferaCYP3 clade and (C) the CYP9 family inB. terrestris.

The production of the hydroxymetabolite of each insecticide is displayed per mg of P450 protein (NS, not significant; **Pc < c0.01, ***Pc < c0.001; Welch’s t test).

Error bars display standard deviation (n = 3).

(B) Phylogenetic tree with branch bootstrap values for A. mellifera (green) and B. terrestris (blue) P450 genes. Genes are grouped according to their adscription to

different P450 clades. Branches within the CYP3 clade marked with a red dot indicate the position of A. melliferaCYP9Qs and their closest B. terrestris orthologs

involved in thiacloprid metabolism, as shown in (A), (C), and (D).

(D) Resistance ratio (RR) of transgenic Drosophila strains expressing A. mellifera AmCYP9Q1–3 or B. terrestris BtCYP9Q4-5 transgenes to thiacloprid and

imidacloprid compared to a control line (flies of the same genetic background but without the transgene). Significance is referenced against this control line and

based on non-overlapping 95% fiducial limits of LC50 values (n = 3).

See also Figures S1, S2, and S3.
metabolism observed in vitro (Figure 2D). Taken together, these

results demonstrate unequivocally that the transcription of

CYP9Q3 confers strong intrinsic tolerance to thiacloprid, but

not to imidacloprid.

To identify potential functional orthologs of honeybeeCYP9Q3

in the bumble bee, we compared P450s identified in the

sequenced genome of B. terrestris [16] with CYP9Q1–3. Phylo-

genetic analysis of the B. terrestris CYPome revealed five candi-
date genes subsequently named asCYP9P1,CYP9P2,CYP9R1,

CYP9Q4, and CYP9Q5 that cluster with honeybee CYP9Q1–3

(Figure 2B). Of these, CYP9Q4 and CYP9Q5 show the greatest

sequence identity to honeybee CYP9Q1–3 (Figure S3). Func-

tional expression of these five P450s in vitro revealed that only

CYP9Q4 and CYP9Q5 metabolize thiacloprid to its 5-hydroxy

form (Figure 2C), with subsequent enzyme kinetic assays con-

firming that CYP9Q4 metabolizes thiacloprid more efficiently
Current Biology 28, 1137–1143, April 2, 2018 1139
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Figure 3. Metabolism of Acetamiprid and

Model Substrates by Honeybee and Bumble

Bee CYP9Q Subfamily P450s

(A and C) Acetamiprid N-desmethylation by re-

combinantly expressed CYP9Q1–3 of A. mellifera

and (C) CYP9Q4–5 ofB. terrestris. The production of

N-desmethylated acetamiprid is displayed per mg of

protein. Error bars display standard deviation (n = 3).

(B and D) (B) Activity of CYP9Q1–3 and (D)

CYP9Q4–5 against different fluorescent coumarin

model substrates. Error bars display standard

deviation (n = 3). Abbreviations: MC, 7-methox-

ycoumarin; MFC, 7-methoxy-4-trifluoromethyl

coumarin; EC, 7-ethoxy coumarin; BFC, 7-benzy-

loxy-4-trifluoromethyl coumarin; EFC, 7-ethoxy-4-

trifluoromethyl coumarin; BOMFC, 7-benzylox-

ymethoxy-4-trifluoromethyl coumarin; MOBFC,

7-p-methoxy-benzyloxy-4-trifluoro coumarin.
than CYP9Q5 (Figure S2). Further functional validation of these

two P450s by expression in transgenic Drosophila revealed

that flies expressing CYP9Q4 exhibited significant (�5-fold)

resistance to thiacloprid compared to controls, whereas flies ex-

pressing CYP9Q5 showed no change in sensitivity (Figure 2D).

As for honeybee CYP9Q1–3, no significant differences were

observed in the sensitivity of flies expressing either CYP9Q4 or

CYP9Q5 to imidacloprid compared to controls (Figure 2D).

Thus, these findings demonstrate that members of the CYP9Q

subfamily also confer tolerance to thiacloprid in B. terrestris.

To further explore the substrate specificity of CYP9Q1–5, we

tested their functional activity against a range of fluorescent

model substrates and acetamiprid, a second N-cyanoamidine

neonicotinoid that also has low acute toxicity to honeybees

and is very rapidly metabolized in vivo [4]. Against coumarin

model substrates, honeybee CYP9Q1–3 show a preference for

bulkier molecules such as BFC and BOMFC, with CYP9Q1 and

CYP9Q3 both showing highest specific activity for BFC (Fig-

ure 3B). In addition, CYP9Q3 demonstrated a pattern of broader

substrate specificity than the other two P450s, suggestive of a

more promiscuous active site (Figure 3B). These results con-

trasted with bumble bee CYP9Q4 and CYP9Q5, which showed

no activity against BFC and, in the case of CYP9Q4, a noticeably

reduced substrate specificity with activity against just two of the

model substrates tested (MFC andMOBFC) (Figure 3D). Incuba-

tion of recombinant CYP9Q1–5 with acetamiprid followed by

LC-MS/MS analyses revealed that all five P450s have the capac-

ity to metabolize this compound to N-desmethyl acetamiprid,

with CYP9Q2–5 exhibiting the highest activity (Figures 3A and

3C). Thus, our data demonstrate that the rapid metabolism of

acetamiprid reported in vivo [4] is likely mediated, at least in

part, by P450s of the CYP9Q subfamily.

The CYP9Q subfamily of P450s has been implicated in

the metabolism of xenobiotics previously, with honeybee
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CYP9Q1–3 all found to metabolize the py-

rethroid tau-fluvalinate and the organo-

phosphate coumaphos, two insecticides

that show marked selectivity for mites

(i.e., Varroa) over bees [15]. Our findings

reveal that in both honey bees and bumble
bees, this P450 subfamily contains potent metabolizers of

certain neonicotinoid insecticides, thus explaining the low acute

toxicity of thiacloprid and acetamiprid. In humans, just a handful

of the 57 functional P450s are responsible for the biotransforma-

tion of most foreign chemicals; for example, CYP3A4 and

CYP2D6 together are responsible for the metabolism of > 50%

of clinically used drugs [17]. The finding that members of the

bee CYP9Q subfamily have the capacity to metabolize com-

pounds belonging to three different insecticide classes suggests

that theymay act as functional insect equivalents of these human

P450s and thus are critically important in defining the sensitivity

of eusocial bees to xenobiotics.

To identify the primary sites of CYP9Q-mediated detoxifica-

tion, P450 expression was assessed in bee body parts and

dissected tissues that are commonly involved in xenobiotic

detoxification [18] by quantitative PCR (qPCR). CYP9Q3 was

expressed at high levels in the honeybee brain and Malpighian

tubules (Figure 4A), the latter finding consistent with a previous

studywhich examined expression in honeybee tissues, including

the Malpighian tubules, by RNA-seq [19]. In B. terrestris,

CYP9Q4 and CYP9Q5 showed marked differences in their

pattern of spatial expression, with CYP9Q4 highly expressed in

the brain (> 60-fold greater than in the other tissues tested)

andCYP9Q5 expressed at relatively uniform levels in themidgut,

Malpighian tubules, and brain (Figure 4A). To examine the

expression of CYP9Q3 at higher resolution, we used in situ

hybridization with digoxigenin-labeled RNA probes to localize

CYP9Q3 expression in the brain andMalpighian tubules. This re-

vealed thatCYP9Q3 is expressed at particularly high levels in the

proximal regions of Malpighian tubules and where they join the

midgut-hindgut junction and in several structures of the honey-

bee brain, including the optic and antennal lobes and the mush-

room bodies (Figures 4B and 4C). Malpighian tubules are the

functional insect equivalents of vertebrate kidneys, and these
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Figure 4. Tissue-Specific Expression and Functional Characterization of Honeybee and Bumble Bee Neonicotinoid-Metabolizing P450s

(A) Relative expression (fold change) ofA. mellifera andB. terrestris thiacloprid metabolising CYP9Q genes in different tissues of worker beesmeasured by qPCR.

Significant differences (p < 0.01) in expression between tissues is denoted using letters above bars as determined by One-Way ANOVA with post hoc testing

(Benjamini and Hochberg).

(B and C) (B) Whole-mount in situ hybridization showing the distribution and abundance of the AmCYP9Q3 transcript in the brain of a worker bee in different

neuronal cells and in (C) the Malpighian tubules and distal midgut.

(D and E) Expression of green fluorescent protein in the Malpighian tubules and specific neurons of the Drosophila brain driven by the Malp-tub GAL4 line.

(F) Sensitivity of transgenic Drosophila to thiacloprid when the Malp-tub GAL4 line is used to drive expression of AmCYP9Q3. Error bars display 95% CLs.
osmoregulatory and detoxifying organs absorb solutes, water,

andwastes from the surrounding haemolymph. The high expres-

sion ofCYP9Q3 in this tissue is therefore highly consistent with a

primary role in xenobiotic detoxification. The expression of

CYP9Q3 and especially CYP9Q4 in the bee brain suggests a

secondary or additional site of detoxification against xenobiotics

that cross the blood-brain barrier, and it is notable that the struc-

tures of the brain expressing CYP9Q3 have been previously

highlighted as sites of AChE activity and nAChR-like immunore-

activity [20]. Based on this finding, we explored the effect of

specifically expressing CYP9Q3 in the Malpighian tubules and

the insect brain on sensitivity to thiacloprid by exploiting the

GAL4/UAS system of Drosophila. Significant levels of thiacloprid

resistancewere observed in transgenicDrosophilawhen expres-

sion of CYP9Q3 was directed to the Malpighian tubules and

neuronal cells (ellipsoid body, pars intercerebralis, fan-shaped

and large-field neurons) (Figures 4D and 4E and 4F), demon-

strating that expression of CYP9Q3 at these sites is sufficient

to provide protection against this insecticide. Previous studies
have examined the expression of honeybee CYP9Q P450s in

different life stages of bees. For example, a recent study per-

formed RNA-seq of different tissues in honeybee foragers, older

workers which gather and process food, and nurses, young

workers that care for brood [19]. While no change was observed

in CYP9Q3 expression in the Malpighian tubules and midgut

between the two worker roles, foragers showed higher levels

of expression in the mandibular and hypopharyngeal glands

[19]. These findings were consistent with a second study, which

examined the expression of CYP9Q1–3 in the legs and antennae

of newly eclosed workers, nurses, and foragers and observed a

pattern of increased expression with age [21]. The greater

expression of these P450s in foragers is consistent with their

increased exposure to xenobiotics compared to nurses, and

their elevated expression in tissues that mediate nectar process-

ing suggests that they may provide a first line of defense against

dietary xenobiotics.

Sequencing of the honeybee genome and the discovery that it

contains a reduced number of genes encoding detoxification
Current Biology 28, 1137–1143, April 2, 2018 1141



enzymes (includingP450s) led to the suggestion that beesmaybe

particularly sensitive to xenobiotics, including pesticides [22].

However, a subsequent meta-analysis of available toxicological

data revealed that honeybees are, in fact, nomore sensitive to in-

secticides than other insect species [23]. Both honeybees and

bumble bees have undergone millions of years of selection to

evolve mechanisms to overcome the diverse array of toxic com-

pounds that occur naturally in their environment [6]. Although

this does not include the relatively recently introduced synthetic

insecticides, our study, in combination with previous work [15],

demonstrates that these existing detoxification pathways can

be recruited to protect bees from pesticides if sufficient similarity

exists between their native substrate(s) and the synthetic com-

pound in question. In this regard, although the diversity of native

substrates that the CYP9Q subfamily can metabolize is not fully

understood, all members of this subfamily in honeybees have

been shown to metabolize the plant secondary metabolite quer-

cetin with high efficiency, a flavonoid that is present in pollen

and nectar, which inhibits mitochondrial ATP synthase [15].

In conclusion, these data demonstrate that the CYP9Q family

of both honeybees and bumble bees contains critically important

enzymes that define their sensitivity to neonicotinoids. This

finding illustrates the importance of considering bee xenobiotic

biotransformation pathways to predict, and potentially influence,

the pharmacological and toxicological outcomes of insecticide

use. For example, the knowledge and tools developed in this

study can be harnessed to avoid negative pesticide-pesticide in-

teractions [24] due to inhibition of these key defense systems.

Furthermore, our findings, and those of previous studies that

have uncovered the molecular and biochemical basis of pesti-

cide selectivity [15, 25–29], can facilitate the development of

compounds that show high efficacy against crop pests but low

toxicity to nontarget beneficial insects. In this regard, the recom-

binant enzymes and transgenic Drosophila lines developed in

our study can be used as screening tools to assess themetabolic

liability of future insecticidal lead compounds and so ensure that

they are rapidly broken down by these major xenobiotic detoxi-

fying enzymes.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Alkaline phosphatase labeled antidigoxygenin

antibody

abcam Cat# ab6212

Biological Samples

Bumblebee Colony Agralan UK Ltd Cat# M644

Chemicals, Peptides, and Recombinant Proteins

NutriFly premix food SLS Cat# FLY1034

Phusion HF DNA polymerase Thermo Fisher Cat# 10024537

SYBR Green JumpStart Taq Readymix Sigma-Aldrich Cat# S4438500RXN

Bradford reagent Sigma-Aldrich Cat# B6916-500ML

NADPH Sigma-Aldrich Cat# N1630-25MG

Glutathione oxidized Sigma-Aldrich Cat# 64501

Glutathione reductase Sigma-Aldrich Cat# G3664

7-Hydroxycoumarin (HC) Sigma-Aldrich Cat# 202-240-3

7-Hydroxy-4-(trifluoromethyl)coumarin (HFC) Sigma-Aldrich Cat# 368512-250MG

7-methoxy-coumarin (MC) Sigma-Aldrich Cat# W515809-25G

7-Methoxy-4-(tri-fluoromethyl)-coumarin (MFC) Sigma-Aldrich Cat# T3165-100MG

7-ethoxy-coumarin (EC) Sigma-Aldrich Cat# E1379-100MG

7-benzyloxy-4-(trifluoromethyl)-coumarin (BFC) Sigma-Aldrich Cat# 5057-5MG

7-ethoxy-4-trifluoro-methylcoumarin (EFC) Sigma-Aldrich Cat# 46127-100MG

7-benzyloxymethoxy-4-trifluoromethyl

coumarin (BOMFC)

Sigma-Aldrich Cat# 5047-5MG

Bovine Serum Albumin (BSA) Sigma-Aldrich Cat# P0834-10X1ML

Piperonyl butoxide (PBO) Sigma-Aldrich Cat# 291102-100ML

Pollen Sussex Wholefoods Cat# 7BEP2

Critical Commercial Assays

ISOLATE II RNA Mini Kit Bioline Cat# BIO-52073

SuperScript III Reverse Transcriptase kit Invitrogen Cat# 18080044

Imidacloprid Bayer CropScience n/a

Thiacloprid Bayer CropScience n/a

Acetamiprid Bayer CropScience n/a

Bac-to-Bac Baculovirus Expression System GIBCO Cat# 10359016

NADPH Regeneration system Promega Cat# V9510

SsoAdvanced Universal SYBR� Green Supermix BIO-RAD Cat# 1725271

PicoPure RNA Isolation Kit Thermo Fisher Cat# KIT0204

iScript cDNA Synthesis Kit BIO-RAD Cat# 1708891

Plant DNeasy Mini Kit QIAGEN Cat# 69104

Deposited Data

See Table S3 for accession numbers of P450s

characterized in this study

N/A See Table S3

Experimental Models: Cell Lines

Sf9 GIBCO Cat# 11496015

High Five GIBCO Cat# B85502

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Drosophila melanogaster:13-20: ‘‘y1w67c23;

P attP40 25C6,’’ ‘‘1;2’’

University of Cambridge Stock 13-20

Drosophila melanogaster: Act5C-GAL4:

[‘‘y[1] w[*]; P(Act5C-GAL4-w)E1/CyO,’’’’1;2’’

Bloomington Stock Center Cat# 25374

Drosophila melanogaster: Malp-GAL4: w[*];

P{w[+mW.hs] = GawB}c42

Bloomington Stock Center Cat# 30835

Drosophila melanogaster: UAS-GFP: w1118;

P{w+mC = UAS-GFP.nls}14

Bloomington Stock Center Cat# 4775

Oligonucleotides

See Supplemental Materials N/A See Table S2

Recombinant DNA

Cytochrome P450 variants GeneArt, CA, USA See Table S3

Cytochrome P450 reductase (CPR) GeneArt, CA, USA GenBank: Q07994

pUASTattB40 Vector Gift from Jacob Riveron, Liverpool

School of Tropical Medicine

GenBank: EF362409.1

Gateway pDEST8 expression vector Invitrogen Cat# 11804010

Software and Algorithms

Geneious v 9.1.8 Biomatters https://www.geneious.com/download/

Genstat v 16 VSN International https://www.vsni.co.uk/software/genstat/

SoftMax Pro 7 Molecular devices https://www.moleculardevices.com/systems/

microplate-readers/softmax-pro-7-software

GraphPad Prism v 7 GraphPad Software Inc. https://www.graphpad.com/

SpectralWorks SpectralWorks Ltd https://www.spectralworks.com/

qbase+ v 3.1 Biogazelle https://www.qbaseplus.com/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests may be directed to and will be fulfilled by the Lead Contact, Chris Bass (chris.bass@exeter.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Insects
Adult honeybees were obtained from open hives during the summer of 2014-2016 that were maintained pesticide-free by bee

keepers at Bayer AG, CropScience Division, Monheim, Germany. Bumblebee colonies were purchased from Agralan UK Ltd and

maintained in constant darkness at 25�C, 50% RH. The colonies were fed ad libitum on the nectar substitute, Biogluc�, and pollen

was supplied to colonies every 2 days.

The Drosophila melanogaster stock 13-20 [‘‘y1w67c23; P attP40 25C6,’’ ‘‘1;2’’] obtained from the University of Cambridge was used

to create all transgenic lines. Virgin females of this line were crossed to males of the Act5C-GAL4 strain [‘‘y[1] w[*]; P(Act5C-GAL4-w)

E1/CyO,’’’’1;2’’] (Bloomington Stock Center) to activate transgene expression (see below for description of methods). The

Malp-GAL4 strain [w[*]; P{w[+mW.hs] = GawB}c42] (Bloomington Stock Center) which expresses GAL4 in the Malpighian tubules

and specific neuronal cells (ellipsoid body, pars intercerebralis, fan shaped and large field neurons), was used to drive the expression

of CYP9Q3 in these tissues. The UAS-GFP strain [w1118; P{w+mC = UAS-GFP.nls}14] (Bloomington Stock Center) was used to visu-

alize the sites of expression driven by Act5C-GAL4 andMalp-GAL4 drivers. All flies were reared on NutriFly food (NLS) at 24�C. Only

female flies 2-5 days post eclosion were used for insecticide bioassays.

Insect cell lines
The Sf9 and High Five insect cell lines (ovarian cells from Spodoptera frugiperda and Trichoplusia ni respectively) were maintained in

suspension culture under serum-free conditions at 27�C containing 25 mg/ml-1 gentamycin in SF-900 II SFM (GIBCO) and Express

Five SFM (GIBCO), respectively.
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METHOD DETAILS

Insecticide bioassays of A. mellifera and B. terrestris

Acute contact insecticide assays were performed on female A. mellifera following standard methods OECD 2013 [30]. Bioassays of

B. terrestriswere based on the OECD guidelines developed for honeybees [30] but with bees assayed in individual Nicot cages. Bees

were starved of sucrose solution for up to 2 hr to encourage feeding during the experiment. Individual B. terrestriswere fed with 20 ul

of insecticide-sucrose solution at concentrations of 0.01, 0.1, 1, 10 and 100 ppm for imidacloprid and 10, 50, 100, 500 and 1000 ppm

for thiacloprid. Controls were fed a solution of sucrose containing a concentration of acetone matching that of the highest treatment

concentration. After 4-6 hr the syringes were assessed to see if bees had consumed the insecticide-sucrose solution. Those that had

not consumed all of the solution were excluded from the experiment. Mortality was assessed 48 hr after feeding and lethal concen-

trations (LC50 values) were calculated by probit analysis using Genstat version 16 (VSN International). For synergist bioassays,

B. terrestris or A. mellifera workers were first treated with 20 mg of piperonyl butoxide or 1 mg of aminobenzotriazole applied to

the dorsal thorax. Synergist bioassays included an additional control group treated only with the synergist. 1 hr after synergist appli-

cation, bees were then treated with the appropriate insecticide dosage as above.

Receptor binding studies
[3H]imidacloprid (specific activity 1.406 GBq mmol�1) displacement studies were conducted using membrane preparations isolated

from frozen (�80�C) honeybee and bumble bee heads, respectively, following previously published protocols [9]. Briefly, bee heads

weighing 10cg were homogenized in 200cml ice-cold 0.1cM potassium phosphate buffer, pH 7.4 containing 95cmM sucrose using a

motor-driven Ultra Turrax blender. The homogenate was then centrifuged for 10cmin at 1200cg and the resulting supernatant filtered

through five layers of cheesecloth with protein concentration determined using Bradford reagent (Sigma) and bovine serum albumin

(BSA) as a reference. Assays were performed in a 96-well microtiter plate with bonded GF/C filter membrane (Packard UniFilter-96,

GF/C) and consisted of 200 mL of homogenate (0.48cmg protein), 25 mL of [3H]imidacloprid (576cpM) and 25 mL of competing ligand.

Ligand concentrations used ranged from 0.001 to 10c000cnM andwere tested at least in duplicate per competition assay. The assay

was started by the addition of homogenate and incubated for 60cmin at room temperature. Bound [3H]imidacloprid was quantified by

filtration into a second 96-well filter plate (conditioned with ice-cold 100cmMpotassium phosphate buffer, pH 7.4 (including BSA 5cg

liter�1)) using a commercial cell harvester (Brandel). After three washing steps (1cml each) with buffer the 96-well filter plates were

dried overnight. Each well was then loaded with 25 mL of scintillation cocktail (Microszint-O-Filtercount, Packard) and the plate

counted in a Topcount scintillation counter (Packard). Non-specific binding was determined using a final concentration of 10cmM

unlabelled imidacloprid. All binding experiments were repeated twice using three replicates per tested ligand concentration. Data

were analyzed using a 4 parameter logistic non-linear fitting routine (GraphPad Prism version 7 (GraphPad Software, CA, USA)) in

order to calculate I50-values (concentration of unlabelled ligand displacing 50% of [3H]imidacloprid from its binding site).

Functional expression of bee P450s
All bee P450 (see Table S3 for accession numbers) and house fly NADPH-dependent cytochrome P450 reductase (CPR) (GenBank

accession number Q07994) genes were obtained by gene synthesis (Geneart, CA, USA) and inserted into the pDEST8 expression

vector (Invitrogen). Codon optimization of all bee genes was used to optimize expression in lepidopteran cell lines. The PFastbac1

vector with no inserted DNA was used to produce a control virus. The recombinant baculovirus DNA was constructed and trans-

fected into Trichoplusia ni (High five cells, Thermo Fisher) using the Bac-to-Bac baculovirus expression system (Invitrogen) according

to the manufacturer’s instructions. The titer of the recombinant virus was determined following protocols of the supplier. High Five

cells grown to a density of 2 3 106 cells ml-1 were co-infected with recombinant baculoviruses containing each bee P450 and CPR

with a range of MOI (multiplicity of infection) ratios to identify the optimal conditions. Control cells were co-infected with the bacu-

lovirus containing vector with no insert (ctrl-virus) and the recombinant baculovirus expressing CPR using the sameMOI ratios. Ferric

citrate and d-aminolevulinic acid hydrochloride were added to a final concentration of 0.1 mM at the time of infection and 24 h after

infection to compensate the low levels of endogenous heme in the insect cells. After 48 h, cells were harvested, washed with PBS,

andmicrosomes of themembrane fraction prepared according to standard procedures and stored at�80�C [31]. Briefly, pellets were

homogenized for 30 s in 0.1M Na/K-phosphate buffer, pH 7.4 containing 1mM EDTA and DTT and 200mM sucrose using a Fastprep

(MP Biomedicals), filtered throughmiracloth and centrifuging for 10min at 680 g at 4�C. The supernatant was then centrifuged for 1 h

at 100,000 g at 4�C, with the pellet subsequently resuspended in 0.1M Na/K-phosphate buffer, pH 7.6 containing 1mM EDTA and

DTT and 10% glycerol using a Dounce tissue grinder. P450 expression and functionality was estimated by measuring CO-difference

spectra in reduced samples using a Specord 200 Plus Spectrophotometer (Analytik Jena) and scanning from 500 nm to 400 nm [31].

The protein content of samples was determined using Bradford reagent (Sigma) and bovine serum albumin (BSA) as a reference.

Metabolism assays and UPLC-MS/MS analysis
Metabolism of thiacloprid, imidacloprid and acetamiprid were assayed by incubating each recombinant bee P450/CPR (50-80mg of

protein/assay) or ctrl-virus/CPR microsomes in 0.1 M potassium phosphate buffer with an NADPH-regenerating system (Promega;

1.3 mM NADP+, 3.3 mM glucose-6-phosphate, 3.3 mM MgCl2, 0.4 U mL-1 glucose-6- phosphate dehydrogenase) and substrate

(10-25 mM; 0.78125 – 200 mM for enzyme kinetics) at 30�C for 2 h (A. mellifera P450s all insecticides), or 27�C for 45 min

(B. terrestris P450s for imidacloprid and thiacloprid) or 60 min (B. terrestris P450s for acetamiprid). The total assay volume was
e3 Current Biology 28, 1137–1143.e1–e5, April 2, 2018



200 mL using three replicates for each data point. Microsomes incubatedwithout NADPH served as a control. The assaywas stopped

by the addition of ice-cold acetonitrile (to 80%final concentration), centrifuged for 10min at 3000 g and the supernatant subsequently

analyzed by tandem mass spectrometry as described previously [18]. For the chromatography on a Waters Acquity HSS T3 column

(2.1x50mm, 1.8mm), acetonitrile/water/0.1% formic acid was used as the eluent in gradient mode. For detection and quantification in

positive ion mode, the MRM transitions 253 > 186, 269 > 202 (thiacloprid, OH-thiacloprid), 256 > 175, 272 > 191 (imidacloprid,

OH-imidacloprid) and 223 > 126, 209 > 126 (acetamiprid and N-desmethyl acetamiprid) were monitored. The peak integrals were

calibrated externally against a standard calibration curve. The linear range for the quantification of neonicotinoid insecticides and

their hydroxylated (thiacloprid and imidacloprid) and N-desmethylated (acetamiprid) metabolites was 0.1 to 1000 ng mL-1. Recovery

rates of parent compounds using microsomal fractions without NADPH were normally close to 100%. Substrate turnover from two

independent reactions were plotted versus controls and Michaelis-Menten kinetics determined using GraphPad Prism version 7

(GraphPad Software, CA, USA).

Functional activity of recombinant P450s against fluorescent model substrates
The activity of individual A. mellifera and B. terrestris recombinant P450s were tested against seven fluorescent model substrates (all

purchased from Sigma); 7-methoxy-coumarin (MC), 7-Methoxy-4-(tri-fluoromethyl)-coumarin (MFC), 7-ethoxy-coumarin (EC),

7-benzyloxy-4-(trifluoromethyl)-coumarin (BFC), 7-ethoxy-4-trifluoro-methylcoumarin (EFC), 7-benzyloxymethoxy-4-trifluoromethyl

coumarin (BOMFC), and 7-p-methoxy-benzyloxy-4-trifluoro coumarin (MOBFC). Assays were carried out in black flat-bottomed 96-

well plates in a 100 mL reaction containing 2 pmol of P450 per 50 mg of protein (B. terrestris) or 50 mg/well (A. mellifera), 1 mM of

NADPH (Sigma) and 50 mM of a model substrate (Sigma). Three replicates were carried out for each data point. P450s incubated

without NADPH and wells containing only potassium phosphate buffer served as controls. Samples were incubated at 25�C for

45 min (B. terrestris) or 30�C for 30 min (A. mellifera). Data were recorded using a SpectraMax Gemini XPS (B. terrestris) or a

SpectraMax M2 (A. mellifera) at the excitation/emission wavelength suitable for each model substrate (MC, EC at 390-465, BFC,

MFC at 410-535, EFC at 410-510 and BOMFC and MOBFC at 405-510 nm). As these substrates have a similar emission wavelength

toNADPH (460 nm) the reaction was terminated prior tomeasurement by the addition of 100mL of a stop solution (25%DMSO, 0.05M

Tris/HCL pH10, 5 mM glutathione oxidised, and 0.2 U glutathione reductase). The reactions were incubated at 25�C (B. terrestris) or

30�C (A. mellifera) for a further 15 min and the data were recorded at the required excitation/emission wavelengths stated above.

7-hydroxy-4-(trifluoromethyl)-coumarin (HFC) (Sigma) was used to generate a standard curve for model substrates BFC, EFC,

MFC, MOBFC, and BOMFC and 7-hydroxycoumarin (HC) (Sigma) for model substrates EC and MC. Each compound was diluted

to a range of concentrations (0, 5, 10, 15, 20, 30, 50, 60, 80 and 100 pmol) using potassium phosphate buffer. 100 mL of each con-

centration was added to each well with four replicates for each data point. 100 mL of stop solution was then added and the contents

mixed. The florescence was measured as above at the corresponding wavelengths for each model substrate. Microsoft Excel was

used to calculate the y intercept for each compound. This was then subtracted from the average fluorescence measurement of each

P450 along with the average control measurements.

Transgenic expression of bee P450s in D. melanogaster

A. mellifera (AmCYP9Q1–3) and B. terrestris (BtCYP9Q4–5) genes were codon optimized for D. melanogaster expression and cloned

into the pUASTattB plasmid (GenBank: EF362409.1). pUASTattB-CYP9Q1–3 and pUASTattB-CYP9Q4–5 constructs were injected

into preblastodermal embryos of a D. melanogaster strain carrying an attP docking site on chromosome 2 (attP40) and the phiC31

integrase gene under the control of the vasa regulatory region on the X chromosome [y w M(eGFP, vas-int, dmRFP)ZH-2A; P{CaryP}

attP40] [32]. The presence of the transgene was confirmed by PCR and sequencing. Genomic DNA was extracted from pools of 10

flies for each line using the Plant DNeasy Mini kit (QIAGEN) following the manufacturers protocol. 20 ng of this DNA was used as

template in PCR using Phusion DNA polymerase (Thermo) following the manufacturers protocol and the primers listed in

Table S2. Thermocycling conditions consisted of an initial denaturation step at 98�C for 30 s, followed by 35 cycles of 98�C for

10 s, 55�C for 20 s, 72�C for 1 min, and a final extension at 72�C for 5 min. Products were direct Sanger sequenced using the primers

detailed in Table S2. Fly lines were made homozygous for the transgene integrations. The GAL4/UAS systemwas used to control the

expression of bee CYP9Q genes in transgenic D. melanogaster. The strain Act5C-GAL4 [y1 w*; P{Act5C-GAL4-w}E1/CyO] was used

to drive the expression of CYP9Q1–3 and CYP9Q4–5 genes ubiquitously under the control of the Actin5C regulatory sequence. The

Malp-GAL4 strain [w[*]; P{w[+mW.hs] = GawB}c42], which expresses GAL4 in the Malpighian tubules and specific neuronal cells

(ellipsoid body, pars intercerebralis, fan shaped and large field neurons), was used to drive the expression of CYP9Q3 in these tis-

sues. The UAS-GFP strain [w1118; P{w+mC = UAS-GFP.nls}14] was used to visualize the sites of expression driven by Act5C-GAL4

andMalp-GAL4 drivers. Transgene expressionwas confirmed by qPCRas previously described [33]. Total RNAwas extracted from 4

pools of 10 adult flies of each line using the ISOLATE II RNA Mini Kit (Bioline) and reverse transcribed to cDNA using Superscript III

reverse transcriptase (Invitrogen) following manufacturer protocols in both cases. PCR reactions (20 mL) contained 10 ng of cDNA,

10 mL of SYBR Green JumpStart Taq Readymix (Sigma), and 0.25 mm of each primer. Samples were run on a Rotor-Gene 6000

(Corbett Research) using temperature cycling conditions of: 2 min at 95�C followed by 40 cycles of 95�C for 15 s, 57�C for 15 s

and 72�C for 20 s. Data were analyzed in Microsoft Excel according to the DDCT method [34] using the RPL11 reference gene for

normalization [33]. Full dose response bioassays were performed by feeding adult female flies a range of insecticide concentrations

dissolved in sugar/agar. At least three replicates of 20 flies were carried out for each concentration. LC50 values were calculated as

above.
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Expression profiling of bee P450s
Bees were dissected and total RNA was prepared from tissues of single female bees using the PicoPure RNA Isolation Kit

(ThermoFisher) as described by the manufacturer. 0.5 mg were used for cDNA synthesis using iScript (Biorad) according to the

manufacturer’s instructions. PCR reactions (10 mL) contained 2.5 mL of cDNA (7.8 ng), 5 mL of SsoAdvanced Universal SYBR Green

Supermix (BioRad), and 0.25 mM of each primer (Table S2). Samples were run on a CFX384 Real Time System (BioRad) using the

temperature cycling conditions of: 3 min at 95�C followed by 39 cycles of 95�C for 15 s, 64�C for 15 s and 60�C for 15 s. A final

melt-curve step was included post-PCR (ramping from 65-95�Cby 0.5�C every 5 s) to confirm the absence of any non-specific ampli-

fication. The efficiency of PCR for each primer pair was assessed using a serial dilution of 25 ng to 0.04 ng of cDNA. Each qPCR

experiment consisted of at least 7 independent biological replicates with three technical replicates for each. Data were analyzed

according to the DDCT method [34] using qbase+ Version: 3.1 (Biogazelle). The expression level was normalized to two validated

reference genes [35–37] for each species. Rpl32 (ribosomal protein L32), GADPH (glyceraldehyde 3-phosphate dehydrogenase),

PAL2 (phospholipase A2) and EEF1A (elongation factor 1-alpha) of the honeybee and bumble bee respectively (Table S2). In situ

hybridization with antibody labeled RNA probes was used to visualize the expression of CYP9Q3 in the brain and Malpighian tubules

of honeybees. Fragments of�700 bpwere amplified from honeybee cDNA by PCR using gene-specific primers (Table S2) containing

the T7 promoter sequence at the end and served as templates for synthesis using the T7 RNA polymerase and digoxigenin-labeled

ribonucleotides. Digoxigenin-labeled riboprobes were purified and hydrolyzed into 100-400 bp fragments with 0.1M sodium carbon-

ate. Tissues from cold-anaesthetized bees were then dissected in PBS, fixed overnight in 4% paraformaldehyde and dehydrated in a

methanol series. Before hybridization tissues were rehydrated in PBS/0.1% Tween, pre-incubated overnight at 55�C in hybridization

buffer (50% formamide, 5xSSC, 0.1% Tween, 100 mg ml-1 yeast tRNA, 200 mg ml-1 salmon sperm, 50 mg ml-1 heparin) and then

hybridized with the diluted riboprobes (1.0-4.0 ug ml-1 in hybridization buffer) at 55�C. After extensive post-hybridization stringency

washes samples were pre-blocked in 1% BSA for at least 1 h prior to overnight incubation with the pre-adsorbed alkaline phospha-

tase labeled antidigoxygenin antibody (1:2000 dilution in PBS/1% BSA/0.1% Tween). The signal was visualized with NBT/BCIP

alkaline phosphatase substrates according to the manufacturer’s instructions.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed in GraphPad Prism 7 (GraphPad Software) apart fromqPCR analsyses, whichwere performed

in qbase+ Version 3.1 (Biogazelle). Significant differences in expression in all qPCR experiments were determined using one-way

ANOVA with post hoc testing (Benjamini and Hochberg). Significant differences in activity of recombinant P450s against thiacloprid

and imidacloprid was determined using a Welch’s t test. Statistical details of experiments (value of n, precision measures and

definitions of significance) are provided in figure legends.

DATA AND SOFTWARE AVAILABILITY

The sequences reported in this paper are all available in online sequence repositories (see Table S3).
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Figure S1. LC-MS/MS analysis of thiacloprid metabolism by CYP9Q3. Related to 

Figure 2.   LC-MS analysis of thiacloprid metabolism. Typical MRM chromatograms of the 

CYP9Q3 catalysed formation of OH-thiacloprid with and without NADPH. Ion transition of 

thiacloprid [M+H]+ 253 and OH-thiacloprid [M+H]+ 269 to their fragments m/z 186 and m/z 

202 are measured, respectively. 
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 CYP9Q1 CYP9Q2 CYP9Q3   CYP9Q4 CYP9Q5 

Vmax 3,92 ±0,08 44,31±1,01 607,8±5,48 Vmax 18,94±0,64 4,29±0,71 

Km 17,83±1,08 5,65±0,49 3,92±0,14 Km 11,82±1,51 30,04±14,85 

 

 

Figure S2. Michaelis-Menten kinetics of thiacloprid hydroxylation by A. mellifera and 

B. terrestris metabolising P450s analysed by non-linear regression. Related to Figure 

2. A, B, Michaelis-Menten kinetics plots of thiacloprid hydroxylation catalyzed by 

AmCYP9Q1-3 (A) and BtCYP9Q4-5 (B). The apparent Km and Vmax values for thiacloprid are 

indicated below the respective graphs. Data points are mean values ± SD (n=3). 

 

 

 

 

 

 

 

 

 

 



 

 

Figure S3. Heat map showing the levels of sequence identity between A. mellifera 

CYP9Q1-3 and B. terrestris CYP9 genes. Related to Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Application Insecticide Synergist 
LD50 

(μg/bee) 
95% CI Slope ± SE 

Synergism 
Ratio 

Topical 

Imidacloprid None 0.38 0.12 - 1.45 0.6 0.11 n/a 

Thiacloprid None >100 n/a n/a n/a n/a 

Oral 

Imidacloprid 

None 0.038 
0.012 - 
0.075 

1.5 0.44 n/a 

PBO 0.032 
0.016 - 
0.05 

1.9 0.41 1.2 

Thiacloprid 

None 19.68 
13.45 - 
26.88 

1.8 0.26 n/a 

PBO 4.73 2.55 - 7.71 1.4 0.24 4.2 

 

Table S1. Sensitivity of Bombus terrestris to imidacloprid and thiacloprid in 

insecticide bioassays. Related to Figure 1.  Neonicotinoid acute contact and acute oral 

LD50 values (95% confidence intervals) and slope (SE) for Bombus terrestris 48 hours 

after application of insecticide. Synergism ratio is also shown, where the P450 inhibitor 

piperonyl butoxide (PBO) was used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Primers Sequence Use 

AmCyp9Q3 F1 5'-GATGTGCGTCGAGAGTTTCC-3' qPCR (CYP9Q3) 

AmCyp9Q3 R1 5'-CTGTCCGGGTCGAATTTGTC-3' qPCR (CYP9Q3) 

AmCyp9Q2 F1 5'-ATGGAAGGAGCACAGGAACA-3' qPCR (CYP9Q2) 

AmCyp9Q2 R1 5'-ACGTCGTTGGTGTATCTGGT-3' qPCR (CYP9Q2) 

AmCyp9Q1 F1 5'-GGAGGAGGGGAAGAGAGGTA -3' qPCR (CYP9Q1) 

AmCyp9Q1 R1 5'-CCTCCTGAAGCCTCTGTTGA-3' qPCR (CYP9Q1) 

AmRpl32 F1 5'-AGTAAATTAAAGAGAAACTGGCGTAA-3' qPCR (reference gene) 

AmRpl32 R1 5'-TAAAACTTCCAGTTCCTTGACATTAT-3' qPCR (reference gene) 

AmGADPH F1 5'-ACCTTCTGCAAAATTATGGCGA-3' qPCR (reference gene) 

AmGADPH R1 5'-CACCTTTGCCAAGTCTAACTGTTAAG-3' qPCR (reference gene) 

BtCyp9Q4 F1 5’-TATTCCACCAACGCCACTGT-3’ qPCR (CYP9Q4) 

BtCyp9Q4 R1 5’-GGTCCACTTCCTTGTATGCG-3’ qPCR (CYP9Q4) 

BtCyp9Q5 F1 5’-CCTACGATGCTCTAAGCGAGATG-3’ qPCR (CYP9Q5) 

BtCyp9Q5 R1 5’-ATTCTCGTAATATTGAGGATCGCG-3’ qPCR (CYP9Q5) 

BtPal F1 5'-TGTCGGTATCTACGCGCCTG-3' qPCR (reference gene) 

BtPal R1 5'-TTGGTGGATGCTTGTCAGTC-3' qPCR (reference gene) 

BtEEF1A F1 5'-AGAATGGACAAACCCGTGAG-3' qPCR (reference gene) 

BtEEF1A R1 5'-CACAAATGCTACCGCAACAG-3' qPCR (reference gene) 

D099 pUAST F TCACTGGAACTAGGCTAGCA-3' Sequence validation of 
transgenic flies 
 

D102 pUAST F 5'-GGATCCAAGCTTGCATGCCTG-3' sequence validation of 
transgenic flies 
 

D100 pUAST R 5'-AAAGGCATTCCACCACTGCT-3' sequence validation of 
transgenic flies 
 

D101 pUAST R 5'-CCACCACTGCTCCCATTCAT-3' sequence validation of 
transgenic flies 
 

AmCyp9Q3 F3  5'-TGGAAGGAGCACAGGAACAT-3' in situ hybridisation (CYP9Q3) 

AmCyp9Q3 R6-T7 5'-TAATACGACTCACTATAGGGAGATGATCACGGCGTCCATGTAT-
3' 

In situ hybridisation (CYP9Q3) 

 

Table S2. Sequence of oligonucleotide primers for, PCR, qRT-PCR and in situ 
hybridization used in this study. Related to STAR methods. 
 

 

 

 

 

 

 

 

 

 



Species 
Gene 
name 

Accession 
Number 

Bombus terrestris CYP9Q4 XP_003393377 

Bombus terrestris CYP9Q5 XP_003393376.1 

Bombus terrestris CYP9P1 XP_020718545.1 

Bombus terrestris CYP9P2 XP_003393388.3 

Bombus terrestris CYP9R1 XP_003393379.1  

Apis mellifera CYP9Q1 XP_006562364 

Apis mellifera CYP9Q2 XP_392000  

Apis mellifera CYP9Q3 XP_006562363  

Apis mellifera CYP9R1 GB16803 

Apis mellifera CYP9S1 XP_016771487 

Apis mellifera CYP336A1 XP_001119981 

Apis mellifera CYP9P1 XP_006562365 

Apis mellifera CYP9P2 GB19055 

Apis mellifera CYP6AQ1 NP_001191991  

Apis mellifera CYP6AR1  XP_623362 

Apis mellifera CYP6AS1 GB16899 

Apis mellifera CYP6AS2 GB19197 

Apis mellifera CYP6AS3 GB15681 

Apis mellifera CYP6AS4 XP_395671 

Apis mellifera CYP6AS5 DQ232888 

Apis mellifera CYP6AS7 XP_006565064 

Apis mellifera CYP6AS8 XP_006565076 

Apis mellifera CYP6AS10 XP_016771320 

Apis mellifera CYP6AS11 XP_016771191 

Apis mellifera CYP6AS12 XP_397347 

Apis mellifera CYP6AS13 GB17831 

Apis mellifera CYP6AS15 XP_623595 

Apis mellifera CYP6AS17 XP_006565063 

Apis mellifera CYP6AS18 XP_006565063 

Apis mellifera CYP6BC1 XP_016766476 

Apis mellifera CYP6BD1 XP_006564499 

Apis mellifera CYP6BE1 XP_624795 

 

Table S3. Accession numbers of P450 sequences functionally expressed in this study. 

Related to STAR methods. 
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