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 15 

Abstract 16 

During evolution, plants have developed the ability to produce a vast array of 17 

specialized metabolites, which play crucial roles in helping plants adapt to different 18 

environmental niches. However, their biosynthetic pathways remain largely elusive. In 19 

the past decades, increasing numbers of plant biosynthetic pathways have been 20 

elucidated based on approaches utilizing genomics, transcriptomics, and 21 

metabolomics. These efforts, however, are limited by the fact that they typically adopt 22 

a target-based approach, requiring prior knowledge. Here, we present MEANtools, a 23 

systematic and unsupervised computational integrative omics workflow to predict 24 

candidate metabolic pathways de novo by leveraging knowledge of general reaction 25 

rules and metabolic structures stored in public databases. In our approach, possible 26 

connections between metabolites and transcripts that show correlated abundance 27 

across samples are identified using reaction rules linked to the transcript-encoded 28 

enzyme families. MEANtools thus assesses whether these reactions can connect 29 

transcript-correlated mass features within a candidate metabolic pathway. We validate 30 

MEANtools using a paired transcriptomic-metabolomic dataset recently generated to 31 

reconstruct the falcarindiol biosynthetic pathway in tomato. MEANtools correctly 32 
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anticipated five out of seven steps of the characterized pathway and also identified 33 

other candidate pathways involved in specialized metabolism, which demonstrates its 34 

potential for hypothesis generation. Altogether, MEANtools represents a significant 35 

advancement to integrate multi-omics data for the elucidation of biochemical pathways 36 

in plants and beyond. 37 

 38 

 39 

Introduction 40 
 41 
Plants have long been recognized for their ability to produce a variety of chemical 42 

compounds, known as specialized metabolites (SM). It is estimated that a total of over 43 

200,000 plant SMs have been reported so far that can be classified into distinct 44 

metabolite classes, mainly terpenoids, alkaloids, phenolics, sulphur-containing 45 

compounds, and fatty-acid derivatives 1. Additionally, metabolomics has revealed an 46 

extensive plant ‘dark matter’, in the sense that a major proportion of metabolites are 47 

yet structurally unknown 2. Also, the functions of most plant SMs are largely 48 

unexplored, but they are generally regarded as crucial for fitness and survival 3–7. 49 

Humans have harnessed these chemical compounds in various areas, including 50 

traditional medicines, pharmaceuticals, cosmetics, and agricultural products. The 51 

biosynthesis of SMs, however, often hinges on external triggers and follows specific 52 

metabolic pathways, which are largely unknown 8. This poses a substantial challenge 53 

in obtaining, cultivating, and extracting these compounds in quantities suitable for 54 

research or commercial production. This lack of knowledge has driven interest in 55 

developing new methodologies to predict and identify new metabolic products as well 56 

as the enzymes that catalyze their biosynthesis. 57 

 58 

In the past decades, along with cost reductions, substantial progress in the generation 59 

of high-throughput omics datasets has resulted in increasing numbers of high-quality 60 

genome assemblies, transcriptome, metabolome, and enzyme reaction datasets 9. 61 

Moreover, advances in synthetic biology allow the validation of in silico analyses in 62 

vivo, increasing the rate at which novel SMs and the associated enzymes can be 63 

characterized 10. This has amplified the discovery and characterization of biosynthetic 64 

pathways in plants. Reconstructing biosynthetic pathways computationally requires 65 

details about genes that encode enzymes catalyzing reactions, as well as the 66 
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metabolites involved in these processes. Tools such as plantiSMASH 11, PhytoClust 67 
12 and PlantClusterFinder 13 are instrumental in identifying gene clusters that are likely 68 

to encode enzymes associated with SM pathways. Yet, many SM pathways in plants 69 

do not have their genes chromosomally clustered. Additionally, co-expression 70 

analyses can be employed to predict functional associations between genes based on 71 

their expression patterns 14,15. In general, individual omics-based investigations, such 72 

as genomics, transcriptomics, or metabolomics, have played pivotal roles in 73 

delineating specific metabolic pathways and their correlated metabolic products 16–27. 74 

Nevertheless, despite these advancements, the intricate genetic makeup and 75 

functional diversity of plant biosynthetic pathways continue to present a formidable 76 

challenge. Specifically, a key limitation to current transcriptome- and metabolome-77 

based pathway discovery strategies is that they require prior knowledge on a 78 

compound or enzyme that can be used as ‘bait’ 28 to identify other compounds and/or 79 

enzymes involved in the same pathway. Yet, prior such knowledge may not always be 80 

available. 81 

A promising solution to this limitation may be found in the integrative analysis of 82 

genomic, transcriptomic, and metabolomics data. Due to the intricate, cooperative 83 

interplay of genes and metabolites in SM biosynthesis, implementing multi-omic 84 

approaches ensures a comprehensive perspective on the entire process. Indeed, the 85 

inclusion of multiple omics layers has facilitated the discovery of several biosynthetic 86 

pathways 29–35. Multi-omics integration strategies can be broadly separated into four 87 

categories: conceptual, statistical, model, and pathway-based. Each strategy presents 88 

distinct challenges, and all have been reviewed in detail before, with multiple examples 89 

of successful usage 36,37. Such integrative omics technologies 9 provide new 90 

opportunities for systematic, unsupervised multi-omics approaches for untargeted or 91 

de novo discovery of pathways involved in the biosynthesis of SMs. 92 

 93 

Here, we introduce MEANtools, a computational pipeline that combines statistical- and 94 

reaction-rules-based integration strategies. MEANtools implements a mutual rank-95 

based 15 correlation approach to capture mass features that are highly correlated with 96 

biosynthetic genes. Our pipeline makes use of general reaction rules and metabolite 97 

structures, stored in public databases like RetroRules 38 and LOTUS 39, to predict 98 

putative reactions that either constitute intermediate steps or complete biosynthetic 99 

pathways. The workflow enables users to explore the biosynthetic potential associated 100 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 23, 2024. ; https://doi.org/10.1101/2024.12.22.629970doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.22.629970
http://creativecommons.org/licenses/by-nc-nd/4.0/


with identified mass features and formulate specific hypotheses about potential 101 

pathways associated with the corresponding metabolites.  102 

 103 

Results 104 

 105 

MEANtools integrates omics data to link transcripts to metabolites 106 

MEANtools integrates mass features from metabolomics data and transcripts from 107 

transcriptomics data to predict possible metabolic reactions and thus generates 108 

hypotheses that can be prioritized for experimental validation (Figure 1a). Reaching 109 

the prediction stage involves several independent steps, including formatting and 110 

annotating the input data, thereby ensuring the data is ready for subsequent 111 

meaningful analysis. MEANtools then leverages RetroRules 38, a retrosynthesis-112 

oriented database of enzymatic reactions annotated with known and predicted protein 113 

domains and enzymes linked to each reaction, to assess whether observed chemical 114 

differences between metabolites (inferred from observed mass shifts) can logically be 115 

explained by reactions that are known to be catalyzed by transcript-associated protein 116 

families (Figure 1b). To identify putative structure annotations for metabolite features, 117 

MEANtools matches their masses to LOTUS 39, a comprehensive well annotated 118 

resource of Natural Products, taking into account possible adducts (Figure 1c). 119 

MEANtools correlates the expression of genes with co-abundant metabolites across 120 

samples in paired transcriptomics and metabolomics experiments, ideally spanning a 121 

range of different conditions, tissues and timepoints. Although the correlation 122 

approach has aided the characterization of diverse metabolic processes in plants by 123 

reducing the dimensionality of the problem and thus generating a small set of testable 124 

hypotheses, it is known to result in a high number of false positive metabolite-transcript 125 

associations when used in isolation. As illustrated in Figure 1d, we use a mutual rank-126 

based correlation method that maximizes highly correlated metabolite-transcript 127 

associations.  128 

 129 

MEANtools then integrates all this information to identify sets of transcript-metabolite 130 

pairs that are both highly correlated in abundance and then highlight cases where the 131 

metabolites are logically connected by catalytic activities associated with these same 132 

transcripts. Thus, MEANtools generates a reaction network where each node is a 133 

mass signature within the metabolome, or an unmeasured ghost mass signature 40. In 134 
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this network, nodes are linked by directed edges representing enzymatic reactions that 135 

can be catalyzed by at least one of the enzyme families encoded by the genes 136 

correlated to one of the two mass signatures the reaction links. This network 137 

representation of the data allows users to explore the biosynthetic potential of any 138 

molecular structure and generate concrete hypotheses about possible pathways 139 

leading up to (or from) a given metabolite, which can be tested in the laboratory. 140 

Results are displayed in a variety of formats for users to interact with, describing 141 

predicted metabolic pathways along with the metabolites, enzymes and reactions that 142 

are potentially involved in them. Altogether, MEANtools serves as a strong basis for 143 

the development of methodologies to explore ways in which paired genomic, 144 

transcriptomic, and metabolomic data can be used to analyze biosynthetic diversity. 145 

 146 

RetroRules and LOTUS database integration 147 

 148 

In the above process, strongly correlated mass feature-transcript pairs are examined 149 

using the general reaction rules obtained from the RetroRules. All enzymatic reactions 150 

in the RetroRules database are cross-referenced with the MetaNetX 41, a repository of 151 

metabolic networks that MEANtools uses to identify the mass differences (shifts in the 152 

masses) between the substrates and products of known enzymatic reactions (Figure 153 

1e). MEANtools then annotates all reactions with an associated mass shift. This step 154 

needs to be executed only once, either during the initial retrieval of the database or 155 

when it is updated. As a next step, users can manually annotate a subset of mass 156 

signatures (mass-to-charge ratios of the measured ions) in the metabolomic dataset 157 

with metabolite structures (Figure 1f & g). Alternatively, MEANtools can assign 158 

potential structure matches by identifying adducts in the metabolome and querying the 159 

LOTUS database for matching metabolites based on molecular weight (Figure 1c).  160 

 161 

To determine the significance of the presence of experimentally characterized 162 

biosynthetic reactions in the RetroRules database, we tested the presence of selected 163 

biosynthetic reactions from the Singh et al., review Figure 1 9 (Supplementary File 1). 164 

Among 187 experimentally characterized biochemical reactions, 134 were found in the 165 

RetroRules database and 53 were missing. The presence of 72% of selected reactions 166 

in the RetroRules database is significantly higher (c2-statistic: 35.10; DF=1; p < 0.001) 167 
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than expected under the null hypothesis of equal probability. This indicates that 168 

RetroRules database has a good coverage of experimentally characterized 169 

biosynthetic reactions, enhancing its reliability for further pathway analysis. 170 

Additionally, for the same set of experimentally characterized reactions, we 171 

investigated the presence of structures for both the substrates and the products, from 172 

the list of experimentally characterized biosynthetic reactions, in the LOTUS database 173 

(Supplementary File 1). Compared to the total 374 structures from the selected 174 

reactions, 132 structures were found in the database with a significance of p < 0.001 175 

(c2-statistic: 32.353; DF=1), highlighting substantial structural overlap. 176 

 177 

RetroRules is populated with ~43,000 reactions annotated with enzymes that are 178 

predicted to be associated with all reactions. Most of these annotated enzyme-reaction 179 

associations, however, are the result of propagating the annotation of characterized 180 

reactions to other reactions with the same enzyme commission (EC) number and they 181 

therefore of various reliability and require verification. To increase confidence in the 182 

enzymatic annotations, we cross referenced each reaction in RetroRules to the 183 

manually curated reaction databases Rhea 42 and KEGG 43. We refined reaction-184 

enzyme associations supported by experimental evidence and then propagated these 185 

annotations through KEGG-orthology groups (Methods). This way, we generated 186 

three datasets namely, strict, medium, and loose, differing in the coverage of chemical 187 

space and confidence in the enzymatic annotations. This was done to remove the 188 

most generic Pfam annotations. Loose dataset contains 2,704,948 reaction rules-189 

enzyme associations expanded from the RetroRules database by cross-referencing 190 

with the Rhea and KEGG-orthology database (Supplementary Figure 1). Medium 191 

dataset contains 429,267 entries consist of experimentally validated entries together 192 

with the ECDomainMiner predictions. Finally, the strict dataset contains 67,501 193 

experimentally validated entries (Supplementary Figure 1). These datasets are 194 

specifically developed for enzyme function prediction and are especially relevant when 195 

specificity is preferred over sensitivity. All three datasets come with taxonomic origin 196 

annotations. Users can therefore not only select the datasets between loose, medium, 197 

strict, but also use the taxonomy of the samples (Supplementary Figure 2) for further 198 

refinement of their analyses based on the species-specificity of Pfams. 199 

 200 
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 201 

Reconstruction of the falcarindiol pathway in tomato 202 

 203 

To assess the performance of MEANtools in predicting metabolic pathways, we used 204 

data derived from a recently published paired omics dataset. Specifically, we assessed 205 

whether MEANtools would be able to reconstruct the falcarindiol pathway in tomato 206 

using the dataset published by Jeon et al. in 2020 32 in the study that originally 207 

elucidated this pathway. MEANtools correctly anticipated five out of seven 208 

transformations of intermediate metabolites in the falcarindiol pathway, along with the 209 

enzymes that catalyze the reactions. The initial untargeted metabolomics and 210 

transcriptomics data comprised 11266 mass features and 20576 transcripts. To 211 

narrow down the counts and select the most informative mass features and transcripts, 212 

we performed differential abundance analysis of mass features and differential 213 

expression analysis of transcripts across samples and time-points. After selecting 214 

features and transcripts based on a corrected p-value and log fold change threshold 215 

of 0.01 and 2, respectively, 1230 mass features and 7590 transcripts remained. 216 

Correlation analysis (step 1), with a minimum absolute Pearson correlation coefficient 217 

of 0.1, further refined the count of informative mass features and transcripts. Four 218 

networks (N) were created with different decay rates (DR). The number of transcripts 219 

and mass features assigned to functional clusters in N1 (DR=5) were 2912 (38.4% of 220 

input genes) and 232 (18.9% of input mass features) respectively. Similarly, for N2 221 

(DR=10) the count was 5488 (72.3%) and 236 (19.2%). For N3 (DR=25) and N4 222 

(DR=50) the count was 6491 (85.5%) / 238 (19.3%), and 6420 (84.6%) / 238 (19.3%) 223 

respectively. MEANtools also returns a p-value for every transcript-mass feature 224 

correlation. This p-value is based on the hypothesis test whether the true correlation 225 

between the two datasets is zero. The distribution  of the p-values resulting from the 226 

correlation step (Supplementary Figure 3) is heavily skewed towards the right and 227 

significantly (Kolomogorov-Smirnov statistics=0.987; p-value=~0.0) deviates from 228 

what would be expected under the null hypothesis of no significant effects, showing a 229 

subset of transcripts and mass features that are significantly associated and reflecting 230 

real biological interactions. 231 

 232 

In the functional clusters (FCs), we first looked for biosynthetic genes (based on 233 

classification using plantiSMASH profile hidden Markov models) predicted to be 234 
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involved in SM pathways, specifically for falcarindiol-related genes 32. Our analysis 235 

revealed a single FC in N2 encompassing three out of the four biosynthetic genes from 236 

this cluster (Figure 2c). This FC, containing all three key biosynthetic genes related to 237 

the falcarindiol pathway, also included a CYP450 gene suspected to be involved in the 238 

modification of dehydrocrepenynic acid—one of the pathway intermediates within the 239 

pathway 32. Other FCs that harbored mass-features present in Figure 2c were merged 240 

and taken further to the pathway prediction step of MEANtools. By using only 241 

experimentally validated enzyme-reaction associations (strict settings), MEANtools 242 

anticipated the second step of the falcarindiol biosynthesis pathway as proposed by 243 

Jeon et al. (crepenynic acid -> dehydrocrepenynic acid), seen in Figure 3b. For this 244 

step, MEANtools predicted Solyc12g100250.1, which shows strong correlation (0.744; 245 

p-value 1.106E-10 (Figure 2D; Supplementary File 2) that Jeon et al. identified as a 246 

major desaturase in the falcarindiol pathway that was linked to this reaction using 247 

transient expression 32. MEANtools also anticipated steps five and six of the pathways 248 

proposed by Jeon et al., (i.e., octadecene diynoic acid -> octadecadiene diynoic acid 249 

-> metabolite_6 -> metabolite_7), as seen in Figure 3a, and provided candidate genes 250 

encoding enzymes with a protein domain that has been characterized as able to 251 

perform each reaction. To further explore the predictive power of MEANtools, we 252 

repeated the analysis with medium and loose settings.  As we moved from strict to 253 

medium and then to loose settings, we observed an increase in enzyme associations 254 

due to the inclusion of less specific Pfam annotations (Supplementary Figure 6). 255 

Distribution of the correlation coefficients of all mass feature-transcript associations 256 

for the falcarindiol pathway can be seen in Supplementary Figure 4. A table with all 257 

the predictions is available in Supplementary File 2. 258 

 259 

Identification of Functional Clusters encompassing other tomato metabolic pathways 260 

 261 

Within the Jeon et al., dataset 32, a wider investigation unveiled multiple FCs housing 262 

biosynthetic genes primarily from three distinct metabolic pathways: the hydroxy 263 

cinnamic acid amide (HCAA) pathway 44 the α-tomatine pathway 45, and the 264 

chlorogenic acid pathway 46. 265 

 266 

We identified two FCs containing biosynthetic genes associated with the synthesis of 267 

p-coumaroyl-CoA from phenylalanine, a process catalyzed by PAL and 4CL, as well 268 
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as the subsequent biosynthesis of p-coumaroyltyramine, a reaction mediated by THT 269 

(Figure 4). Interestingly, all metabolites within these two functional clusters were 270 

putatively annotated within the superclass of phenylpropanoids and polyketides 271 

(Supplementary File 1). Figure 4c depicts the FC containing PAL (Solyc10g086180; 272 

node with a pink border) and 4CL (Solyc03g117870; node with orange border), and 273 

metabolites involved in the conversion of phenylalanine to p-coumaroyl-CoA. This FC 274 

also contains other co-expressed genes along with PAL and 4CL. Additionally, the 275 

correlation analysis performed by MEANtools revealed another FC (Figure 4f) related 276 

to the production of p-coumaroyltyramine catalyzed by THT (Solyc08g068790; node 277 

with a red border). According to the expression heatmaps depicted in Figure 4a and 278 

b, while PAL and 4CL showed constitutive expression patterns across both mock and 279 

treated samples, THT exhibited significant differential expression (p-value < 0.05 and 280 

logFC = 4.7) in samples treated with fungal pathogens compared to mock-treated 281 

ones. Both the metabolite and genes present in the THT FC (Figure 4f) show 282 

overlapping abundance and expression patterns (highlighted with black solid bar in 283 

the heatmaps of Figure 4a-b). 284 

 285 

In another biosynthetic pathway, namely the α-tomatine pathway, we observed the 286 

presence of genes distributed across multiple FCs (Supplementary Figure 5). This 287 

pathway involves nine specific biosynthetic genes responsible for converting 288 

cholesterol into α-tomatine, and these genes have been extensively characterized in 289 

tomato 45. MEANtools captured all biosynthetic genes involved in the glycoalkaloid 290 

metabolism (GAME) group, including GAME1, GAME4, GAME6, GAME7, GAME11, 291 

GAME12, GAME17, and GAME18, in nine different FCs (Supplementary figure 9). 292 

Furthermore, GAME9, an APETALA2/Ethylene response factor, related to regulator of 293 

the steroidal glycoalkaloid pathway in tomato, was also captured within one of the 9 294 

FCs. Additionally, we found biosynthetic genes involved in the synthesis of precursors 295 

for the α-tomatine pathway, such as SQS (Squalene Synthase), TTS1 (β-Amyrin 296 

Synthase), TTS2 (β-Amyrin Synthase), and SSR2 (Sterol Side Chain Reductase 2), 297 

present in multiple instances throughout the network. We used coexpression network 298 

to merge FCs, resulting in coexpression edges between biosynthetic genes from the 299 

α-tomatine pathway GAME12 transaminase, and 2-oxoglutarate-dependent 300 

dioxygenase GAME11, and GAME17 (UDP-glucosyltransferase) and GAME1 (UDP-301 

galactosyltransferase) (Supplementary figure 8). Additionally, MEANtools successfully 302 
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pinpointed another crucial biosynthetic gene associated with the chlorogenic acid 303 

biosynthetic pathway, known as HQT (Hydroxycinnamoyl-CoA quinate: 304 

hydroxycinnamoyl transferase). HQT plays a pivotal role in facilitating the 305 

transformation of quinic acid into caffeoyl quinic acid, which represents another 306 

specialized metabolite within the phenylpropanoid pathway.  307 

 308 

MEANtools facilitates prioritization of reaction steps using reaction likelihood scores 309 

MEANtools generates reaction-likelihood scores based on substrate-enzyme 310 

association, for each anticipated reaction (Figure 5). To obtain the score, the likelihood 311 

of each atom in the substrate is calculated for being a site-of-metabolism using the 312 

GNN-SOM 47 method. This results in an array of likelihoods for each atom in the 313 

substrate. Later, using ReactionDecoder 48, reaction centers and bond cleavages are 314 

predicted between each substrate and product. MEANtools makes use of this 315 

information to extract likelihood scores only for atoms that are involved in reaction 316 

centers and bond cleavages. The maximum value of likelihood score within the 317 

reaction center represents the reaction likelihood score. Figure 5c shows the 318 

distribution of likelihood scores for experimentally characterized enzyme-substrate 319 

pairs, referred to as Known in Supplementary file 1, and randomly assembled enzyme-320 

substrate pairs as Random. The likelihood scores differ significantly (Mann-Whitney U 321 

statistic: 2573.0, P-value: 4.4e-07) between Known and Random pairs, with median 322 

and mean values of 0.86 and 0.70 for Known pairs, and 0.29 and 0.39 for Random 323 

pairs, respectively. 324 

 325 

Discussion 326 

 327 

MEANtools can generate testable hypotheses on metabolic pathways with little to no 328 

prior knowledge, by integrating metabolomics and transcriptomics data. This method 329 

effectively automates the identification of key Pfam domains required for a specific 330 

reaction and allows users to tune the reaction-Pfam domain associations according to 331 

their level of confidence or based on the taxa of origin. To do so, MEANtools queries 332 

RetroRules, a retrosynthesis-oriented enzymatic reactions database, showing that 333 

tools and methods within the retrosynthetic biology and synthetic pathway design 334 

fields have considerable application potential for metabolic pathway prediction and 335 

potentially SM discovery.  336 
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 337 

Metabolomics and transcriptomics datasets are typically used as CSV-formatted pre-338 

processed tables featuring mass-feature abundances and transcript expressions, 339 

respectively. Integrating such datasets solely through Pearson-based correlations 340 

often results in many false-positive associations. Additionally, determining an optimal 341 

threshold for eliminating weak correlations poses significant challenges. The use of 342 

mutual-rank statistics has proven effective for constructing global gene co-expression 343 

networks, as demonstrated by Wisecaver et al 49. Leveraging this approach, we 344 

utilized the mutual rank-based method to develop a correlation-based global gene-345 

metabolite network. This network highlights strongly correlated genes and 346 

metabolites. Ideally, individual FCs should advance to the next stage of pathway 347 

prediction. However, the FCs size may sometimes be insufficient for forming a 348 

complete biosynthetic pathway. The FCs size proved stable across the treatment 349 

combinations in Jeon et al. (2020) dataset 32 (Supplementary Figure 7). Given that 350 

genes and metabolites in plant biosynthetic pathways tend to overlap, FCs are also 351 

overlapping in nature. MEANtools provides a script (merge_clusters.py) to merge 352 

multiple FCs that share common mass features. Mass features that exhibit distinct 353 

abundance patterns across samples are then grouped into separate clusters following 354 

this merging process. This step is crucial for ensuring enough mass features and 355 

transcripts remain to either fully or partially reconstruct a biosynthetic pathway. 356 

Changing the size of FCs is also possible using the ClusterONE 50 inbuilt parameter. 357 

However, this also changes the clustering pattern of mass features and transcripts. 358 

Additionally, the current method to provide significance to each FC could also be 359 

improved, as this was originally developed for co-expression datasets.  360 

 361 

The RetroRules database is publicly available as SQLite database and can be used 362 

directly with MEANtools. The three reaction rules datasets resulting from RetroRules, 363 

loose, medium, and strict are available in a single CSV file in the GitHub repository. 364 

MEANtools includes these three different datasets as an input parameter (strict, 365 

medium, and loose, respectively) to allow the user to constrain the predictions for 366 

specific purposes and find the right balance between sensitivity and specificity, 367 

considering the tradeoff between enzymatic annotation confidence and diversity of the 368 

resulting set of enzymatic reactions. In the strict dataset, which is a smaller subset of 369 

reaction-rule-enzyme associations, the number of resulting candidate genes in the 370 
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final reaction anticipations was reduced due to its more specific Pfam annotations. On 371 

the contrary, reaction anticipations with the loose set were associated to unrelated 372 

Pfams (Supplementary Figure 7), such as AminoTran_1_2 or Glyco_transf_20, 373 

responsible for transferring amino and sugar groups respectively 51. Such unrelated 374 

Pfams were not found in the strict rule dataset, as shown in the hydroxylation of 375 

octadecadiene-diynoic acid into metabolite 6 and its subsequent hydroxylation into 376 

metabolite 7. These spurious links, coming from RetroRules, have been kept in the 377 

loose dataset after applying the Pfam cutoff of 6, which highlights the importance of 378 

using the strict rules dataset when specificity is preferred over sensitivity. Most 379 

importantly, both predictions correctly predict the enzyme associated to the conversion 380 

of octadecadiene- diynoic acid into metabolite 6, as reported by Jeon et al., (2020)32. 381 

Transient expression of this enzyme in Nicotiana benthamiana (Solyc10g100250) was 382 

experimentally associated to depletion of crepenynic acid and the production of two 383 

new metabolites 32. According to the observed LC-MS profile, one of the metabolites 384 

was putatively identified as octadecadiene- diynoic acid, making plausible the role of 385 

Solyc10g100250 in its conversion to metabolite 6.  By cross-checking these reaction-386 

enzyme association datasets with sets of correlated enzyme-coding genes and 387 

metabolites, MEANtools effectively filters the set of possible mass shift-reaction 388 

associations based on the available -omics evidence.   389 

 390 

In the reconstruction of PAL and THT biosynthetic pathways, the reconstruction of 391 

reaction steps using the second step of MEANtools was hindered due to two main 392 

factors. Firstly, the conversion of phenylalanine to p-coumaroyl-CoA involves 393 

stereoisomers, which are not captured by the mass spectrometric data. Secondly, the 394 

conversion to p-coumaroyltyramine requires two substrates, tyrosine, and p-395 

coumaroyl-CoA, whereas RetroRules-based rules are designed for single-substrate 396 

reactions only. Although RetroRules contains a rule for the stereomeric conversion of 397 

phenylalanine to p-coumaroyl-CoA, MEANtools filters such rules involving stereomeric 398 

structures to avoid complexity.   399 

 400 

The initial construction of this substructure map occurs once, either during the initial 401 

retrieval of the RetroRules database or during updates (step 1 Figure 1b). MEANtools 402 

uses this substructure map to generate pathway predictions. To this end, in step 2 403 

(Figure 1c), it predicts possible metabolites and their corresponding molecular 404 
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structures for each mass feature by identifying possible adducts and querying the 405 

LOTUS database, or a user-defined metabolite database that can be supplied in CSV 406 

format. The LOTUS database was converted to an SQLite format to be compatible 407 

with MEANtools, and it was made available in the GitHub repository. In step 3 (Figure 408 

1e-g), MEANtools exclusively queries reactions that would yield metabolites with mass 409 

features that can be mapped within the metabolome or as ghost mass signatures. 410 

Collectively, this strategic approach enables MEANtools to efficiently utilize computing 411 

resources when generating in-silico molecules. Because of step 3, MEANtools 412 

produces a sequence of subsequent reactions, along with predicted products for all 413 

pairs of mass signatures, correlated enzyme-coding genes, and references to 414 

characterized reactions and enzymes that served as the rules for predicting these 415 

reactions.  Step 3 can be iterated multiple times, as desired by the user, enabling the 416 

generation of pathway predictions extending beyond a single enzymatic reaction away 417 

from the initial query molecule. 418 

 419 

Because of MEANtools’ flexible and modular design, there is room for improvement in 420 

many of its processing steps. Annotating mass signatures with predicted structures 421 

can be improved by allowing to load MS/MS data and use mass spectral library and 422 

networking-based annotation approaches 52 to increase accuracy and allow validation, 423 

in a similar way as done by MetWork 40. Gene-metabolite clusters can further be 424 

improved by a more elaborate co-expression and/or molecular network analysis. 425 

Converting predicted reaction networks into directed acyclic graphs (DAGs) is 426 

currently used to study and present unsupervised predictions, but more complex 427 

manipulations of the network may allow for predictions better tailored for the user, such 428 

as prioritizing specific reactions or molecular substructures, for example by integrating 429 

MS2LDA analyses 53. We also note that further curating the reaction-Pfam domain 430 

associations or allowing the user better control over them by allowing customized 431 

reaction-rule databases could improve the method as well: some enzyme domains 432 

may be linked to large numbers of reactions, likely leading to false positives when the 433 

objective is to predict biosynthesis pathways, but these enzyme domains could be 434 

useful when exploring the biosynthetic potential of a structure when designing a 435 

synthetic pathway. Finally, the reaction likelihood scores can also be improved by 436 

adopting or developing precise methods for reaction site predictions.  437 

 438 
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Altogether, we present a novel computational method to predict metabolic pathways 439 

guided by multi-omics evidence, allowing researchers to conveniently generate 440 

testable and easy-to-browse hypotheses. Furthermore, we anticipate that our work 441 

provides the basis for future work to expand the numbers of ways in which paired 442 

genomic, transcriptomic and metabolomic data can be used to link natural product 443 

chemistry to biosynthesis genes and producers, and to analyze biosynthetic diversity 444 

in nature. 445 

 446 

Methods 447 

 448 

Correlation-based integration generates testable associations 449 

Global reconstruction of co-expression modules in gene expression data has been 450 

shown to be a powerful method to identify groups of genes involved in the same 451 

metabolic pathway when querying for modules with genes that encode biosynthetic 452 

enzymes 49. In MEANtools, instead of generating co-expression modules using 453 

transcriptomics dataset, functional clusters (FC) are generated for different network 454 

sizes by integrating transcriptomics and metabolomics data (Figure 1d). Inspired from 455 

the work of Wisecaver et al. 49, correlation values between mass features and 456 

transcripts are first converted to mutual ranks (MR) 54, which are then subjected to an 457 

exponential decay function that converts continuous MR values to numbers between 458 

0 and 1 and referred here as edge weights. Both node types and edge weights are 459 

further subjected to clustering using ClusterONE 50, which results in multiple 460 

overlapping FCs. Each FC represents a significant association of mass abundance 461 

and transcripts expression patterns across samples. In a network view, mass feature 462 

and transcripts represent two unique node types connected by edge weights. 463 

MEANtools allows users to visualize the expression of each FC in the form of 464 

heatmaps with transcripts sorted in three categories according to the protein domains 465 

they encode, following the same categorization used by plantiSMASH: scaffold-466 

generating enzymes, tailoring enzymes, and the remaining genes 11.  467 

 468 

Rescaling input data using Median Absolute Deviation (MAD) 469 

 470 

MEANtools employs the Median Absolute Deviation (MAD) for data rescaling. MAD 471 

calculates the median of all values within the dataset, which represents the 50th 472 
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percentile. It then determines the absolute difference between each value and the 473 

calculated median and ensures that the differences are expressed as positive values, 474 

regardless of whether they are greater or less than the median.  Finally, computing the 475 

median of these absolute differences yields the MAD (equation 1).  476 

 477 

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(	|	𝑋𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑋)	|	) 478 
( 1) 479 

 where Xi refers to the ith row element present in the data matrices  480 

 481 

Computation of mutual rank and edge weights 482 

 483 

Pairwise correlations of transcripts and mass features are converted to mutual ranks 484 

(MR; calculated as a geometric mean of the rank of Pearson correlation coefficient 485 

(PCC) of transcript A to mass feature A and of the PCC rank of mass feature A to 486 

transcript A. This MR statistic is calculated for every transcript-mass feature pair. Since 487 

the MR value can vary between 1 and n-1, where n represents the total number of 488 

features in either the transcriptomic or metabolomic dataset, we transform the MR 489 

scores into edge weights, ranging between 0 and 1, using an exponential decay 490 

function 49. By default, MEANtools computes edge weights by using four different rates 491 

of decay (5, 10, 25, 50) resulting in five different networks of varying sizes (equation 492 

2).  The modified exponential decay function is: 493 

 494 

𝑁𝑖 → 𝑗 ∶ 𝑒!(#$!%)'→) 495 
( 2) 496 

where i→j refers to multiple decay rates and Ni→j represents a combined network 497 

generated using i→j decay rates. MR denotes the estimated mutual rank between 498 

genes and metabolites. Gene–metabolite pairs that show lower edge score than 0.01 499 

are excluded in the Ni→j networks. 500 

 501 

MEANtools then employs the graph-clustering method ClusterONE 50, which identifies 502 

overlapping clusters of transcripts and mass features. Clustered transcripts and mass 503 

features can assemble into a biologically significant sub-network, which we refer to as 504 

a functional cluster (FC). Such clusters represent a higher-level organization of the 505 
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transcriptome and metabolome. The average number of FCs per network decreases 506 

with increasing network size. For each FC, ClusterONE assigns a p-value derived from 507 

the comparison between edges within the FC and those that radiate out of the FC. The 508 

resulting network, stemming from various decay rates, is then stored within an SQLite 509 

database. 510 

 511 

 Mass-shifts associated to reactions serve as templates for pathway predictions 512 

MEANtools leverages the established relationships between reactions and their 513 

associated mass shifts to scan the input metabolome. It assigns molecular structures 514 

to each mass feature of the metabolome by mapping them with a list of adducts and 515 

then querying LOTUS database (downloaded on 10/10/2023). LOTUS database was 516 

converted to an SQLite format to be compatible with MEANtools and made available 517 

in the GitHub repository. It identifies pairs of mass features with discernible differences 518 

in mass-charge ratios that can be logically explained by known reactions. Within this 519 

process, one mass feature is annotated as a potential substrate, while the other is 520 

marked as a product. It is worth noting that a given mass shift might be assigned to 521 

more than one reaction, and many reactions are bidirectional in nature. Consequently, 522 

any pair of mass features can be associated with multiple reactions, considering both 523 

forward and reverse directions. Additionally, recognizing that not all metabolites within 524 

a metabolic pathway may reach detectable levels in the (measured) metabolome, 525 

MEANtools optionally generates ‘ghost mass signatures.’ These ghost signatures 526 

serve as virtual, unmeasured intermediates between any two metabolites that possess 527 

measured mass signatures. This concept, recently introduced in MetWork 40 in the 528 

construction of metabolic networks based on MS/MS spectra, is also applied here. 529 

Notably, although the ghost mass feature is provided as an option to use for all 530 

reactions, it automatically gets switched on when MEANtools fails to assign mass 531 

features either as substrates or products. By incorporating information on reaction-532 

mass-shift associations, MEANtools constructs a comprehensive reaction network. 533 

This network comprises mass signatures connected by annotated reactions and forms 534 

the foundational framework for the subsequent prediction of metabolic pathways. 535 

 536 

Prediction of metabolic pathways  537 

MEANtools leverages the reaction network to facilitate the generation of pathway 538 

predictions. Initially, it predicts potential metabolites along with their corresponding 539 
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molecular structures for each mass signature. Subsequently, MEANtools employs the 540 

RDKit 55,56 Python package (v 2019.03.2.0) to computationally generate in silico 541 

structures resulting from each reaction-associated substrate. 542 

 543 

Given the substantial number of reactions cataloged in RetroRules, generating all 544 

product molecules for the metabolite structures predicted in a metabolome by querying 545 

every reaction can be time-consuming and computationally intensive. From each 546 

reaction, new metabolites emerge, leading to a large number of molecular structures. 547 

To expedite this process, MEANtools relies on -omics evidence, specifically the 548 

reaction-substrate-enzyme pairs under the confinement of FCs, to guide the 549 

generation of in-silico molecules. 550 

 551 

Further acceleration is achieved by targeting specific substructures within each 552 

metabolite structure, employing a divide-and-conquer strategy (Figure 6). For each 553 

metabolite structure, MEANtools initiates by verifying the presence of specific atoms, 554 

such as N or C. Upon success, the next step involves querying reactions that pertain 555 

only to simple substructures, like N=N and C=C. If both atoms are present, MEANtools 556 

extends its search to reactions centered on substructures like C=N and C-N. In 557 

subsequent rounds, MEANtools explores more complex substructures based on the 558 

substructures identified in prior steps. For instance, metabolites with the C=N 559 

substructure are exclusively queried for reactions centered on the C=N-C 560 

substructure. This iterative process continues until no further successful queries are 561 

obtained for a given metabolite. 562 

 563 

Easy-to-browse MEANtools output 564 

MEANtools generates user-friendly visualizations and supplementary data in the form 565 

of easy-to-browse tables. MEANtools stores these tables in an SQLite database. It 566 

also offers python-based utility scripts to retrieve and visualize FCs within the MR-567 

based correlation network. 568 

 569 

MEANtools analyzes the reaction network created in the preceding stages to predict 570 

candidate metabolic pathways aligned with the user's interests. To accomplish this, 571 

the NetworkX 56 Python package (v2.4) is utilized. MEANtools constructs a distinct 572 

subnetwork for each of the initial metabolites provided by the user. These subnetworks 573 
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are transformed into directed acyclic graphs (DAGs) by identifying any cycles within 574 

the network, representing potential reversible reactions. Only links capable of 575 

advancing the reaction away from the initial metabolite are retained. In instances 576 

where cycles occur among metabolites at the same reaction distance from the initial 577 

metabolite, the edge featuring the weakest enzyme-metabolite correlation is 578 

eliminated. This approach yields multiple DAGs rooted at the initial metabolites, each 579 

offering the potential for candidate metabolic pathways. The longest reaction path in 580 

each subnetwork, commencing from the initial metabolite, is identified to predict these 581 

pathways. This process is repeated to generate a DAG for each initial metabolite at 582 

the termination of the reaction, yielding two pathway predictions for each input 583 

structure. MEANtools then delivers the complete reaction network and all DAGs in the 584 

form of CSV tables, facilitating seamless import and exploration within Cytoscape. 585 

Furthermore, pathway predictions are presented as SVG image files, providing 586 

comprehensive details regarding the involved metabolites, reactions, genes, and their 587 

respective correlations. To enhance user exploration, MEANtools offers an option to 588 

generate SVG files for each molecular structure predicted in earlier stages. This lets 589 

users pinpoint and prioritize structures or reactions of interest. MEANtools can 590 

construct DAGs and pathway predictions rooted at any user-selected molecule.  591 

 592 

Data availability 593 

Raw paired-transcriptomics and -metabolomics data for the case study was taken from 594 

NCBI BioProject: PRJNA509154 and EBI’s MetaboLights: MTBLS1039 respectively 595 
32. Pre-processed file of the metabolomics data is available at 596 

https://github.com/sattely-lab/falcarindiol_pathway_metabolomics. All the input files 597 

used in the case study can be found in the ‘data’ folder in the MEANtools GitHub 598 

repository https://github.com/kumarsaurabh20/meantools.  599 

 600 

Code availability 601 

MEANtools is open source and is freely available on its GitHub page 602 

(https://github.com/kumarsaurabh20/meantools), under the permissive MIT license. 603 

The MEANtools documentation and tutorial with the demo data is available on GitHub 604 

at https://meantools.readthedocs.io/en/latest/. 605 

 606 
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Figure legend 618 

 619 

Figure 1: MEANtools predicts metabolic pathways by integrating transcriptomic, 620 

metabolomic, and genomic data. a) Mass signature or mass feature profiles are 621 

collected using standard metabolomic data processing pipelines. The feature table 622 

has rows as unique features and columns are divided into multiple components, like 623 

m/z values, retention times, and mass abundance values across samples. Similarly, 624 

the transcript expression matrix is collected using a standard RNA-seq data 625 

processing pipeline. In the expression matrix, rows represent different transcripts and 626 

columns have normalized count data across samples. b) The RetroRules database is 627 

formatted by cross-referencing it with the MetaNetX database for its substrate and 628 

related mono-isotopic masses. Based on these masses, mass transition values are 629 

calculated for all reactions. c) Feature IDs and m/z values of mass signatures are 630 

mapped against a list of user-defined adducts table. By default, MEANtools provides 631 

a list of 48 adducts from both positive and negative mode operations. All m/z values 632 

are accounted with the adducts masses and PPM value and mapped against the 633 

LOTUS database. This mapping results in the putative annotation of each feature ID 634 

with specific structures from the LOTUS database. d) Correlations are computed 635 

between expression levels of transcripts and abundances of metabolites. e) The 636 

protein families/domains encoded by the genes in the correlated transcript-metabolite 637 

pairs are used to query RetroRules and identify which enzymatic reactions may be 638 

associated with each transcript. f&g) MEANtools then integrate the results of previous 639 

steps to identify cases in which metabolite pairs are correlated to a transcript that 640 

encodes an enzyme capable of catalyzing a reaction that explains their mutual mass 641 

difference. Finally, MEANtools maps the product of these reactions to other mass 642 

signatures in the metabolome and repeats the procedure to generate pathway 643 

predictions. 644 

 645 

Figure 2: Identification of the Functional Cluster (FC) belonging to the falcarindiol 646 

pathway. a) Network diagram illustrating the connections between transcripts and 647 

metabolites within the falcarindiol FC, with pathway-related transcripts marked with an 648 

asterisk. b) Heatmap displaying the expression levels of all genes within the 649 

falcarindiol FC. c) Heatmap showing the abundance of mass-signatures associated 650 
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with the falcarindiol FC.  d) Summary table presenting the correlations between 651 

transcripts and metabolites from the falcarindiol FC 652 

 653 

Figure 3: MEANtools reconstructs parts of the falcarindiol pathway as proposed by 654 

Jeon et al., and the genes responsible for each enzymatic step. A) MEANtools predicts 655 

the second step of falcarindiol biosynthesis in reverse (dehydrocrepenynic acid à 656 

crepenynic acid). The transformation is annotated with the reaction rule used in the 657 

transformation, diameter of reaction and RetroRules-based reaction IDs, enzyme 658 

support, edge support and reaction likelihood. B) MEANtools predicts the third step of 659 

falcarindiol biosynthesis in reverse starting from falcarindiol. Each transformation is 660 

annotated with a reaction rule associated with that transformation. Additionally, the 661 

reaction rule is annotated with the diameter of the reaction and reaction IDs from 662 

RetroRules database. Each transformation in the second step of falcarindiol 663 

biosynthesis is also annotated with enzyme support, edge support based on 664 

correlation values and the reaction likelihood scores. 665 

 666 

Figure 4: Detection of functional clusters (FCs) specific to the phenylalanine (PAL) 667 

and p-coumaroyltyramine (THT) pathways. a) Network depicting the relationship 668 

between transcripts and mass signatures within the PAL FC. b) Network illustrating 669 

the interplay between transcripts and mass signatures within the THT FC. c) Heatmap 670 

illustrating the expression levels of all transcripts within the PAL and THT FCs. d) 671 

Heatmap displaying the abundance of all mass signatures present in the PAL and THT 672 

FCs. e) Correlation matrix highlighting the correlations among transcripts and mass 673 

signatures within the PAL FC. f) Correlation matrix displaying the relationships 674 

between transcripts and mass signatures within the THT FC, including Mutual rank 675 

and transformed edge weights.  676 

 677 

Figure 5: Overview of the estimation of reaction likelihood scores. A) The 678 

transformation of naringenin to 2-hydroxynaringenin requires a flavanone 2-679 

hydroxylase enzyme. B) To estimate the likelihood score of this reaction, the SMILES 680 

ID and the enzyme EC number was used as an input to the GNN-SOM method. GNN-681 

SOM predicts likelihood scores of each atom in the molecule for being a site-of-682 

metabolism. As a next step, we take the SMILES ID of the substrate and the product 683 

and use the ReactionDecoder tool to identify the reaction centers and possible bond 684 
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formation/cleavage site(s). Referring to the atom index of the atoms in the reaction 685 

center, we select the highest likelihood score. This value represents the reaction 686 

likelihood score of a reaction which is 0.94 for the transformation of naringenin to the 687 

2-hydroxynaringenin. C) Distribution of reaction likelihood scores from experimentally 688 

validated enzyme-substrate pairs (Known) and randomly assigned enzyme-substrates 689 

pairs (Random). 690 

 691 

Figure 6: MEANtools identifies reactions for a molecular structure according to a 692 

divide-and-conquer strategy. For each metabolite, MEANtools first queries the 693 

presence of key atoms and then continues to query, in rounds, increasingly complex 694 

reactant substructures according to which substructures have already been identified. 695 

For example, A) a set of metabolites is first queried for B) nitrogen and carbon atoms. 696 

C) Metabolites that pass these criteria are then queried for more complex 697 

substructures like C-N or C=C. D) In the following round, MEANtools queries 698 

substructures with more complexity according to which substructures have already 699 

been identified: in this manner, only metabolites with the N=C substructure is queried 700 

for the N=C-N substructure. 701 

 702 

Supplementary Figure 1: Venn diagram of the content of three datasets, namely loose, 703 

medium and strict. Loose dataset contains reaction rules-enzyme associations from 704 

the RetroRules database, cross-referenced with the Rhea and KEGG-orthology 705 

database. Medium dataset contains experimentally validated entries together with the 706 

ECDomainMiner predictions. The strict dataset contains only experimentally validated 707 

entries. 708 

  709 

Supplementary Figure 2: Distribution of taxonomic groups in the reaction-enzyme 710 

loose dataset. X- and Y-axis represent categories of the taxonomic group and their 711 

counts respectively.  712 

  713 

Supplementary Figure 3: Distribution of p-values from the correlation analysis between 714 

the processed transcriptomics and metabolomics datasets from Jeon et al., 2020. 715 

  716 
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Supplementary Figure 4: Distribution of correlation coefficients from the correlation 717 

analysis between the processed transcriptomics and metabolomics datasets from 718 

Jeon et al., 2020 32. 719 

  720 

Supplementary Figure 5: Functional clusters (FC) encompassing genes from the 721 

alpha-tomatine pathway of Solanum lycopersicum.  722 

  723 

Supplementary Figure 6: Prediction of intermediate steps of falcarindiol pathway from 724 

MEANtools using strict (A) and loose (B) datasets. Number of enzyme associations is 725 

reduced while using strict dataset due to its more specific Pfam annotations. Blue 726 

arrow shows non-specific enzyme associations predicted with loose dataset. 727 

Supplementary Figure 7: Distribution of FC node size across decay rates and 728 

treatments. For each combination of treatment from the Jeon et al. (2020) dataset 32, 729 

fungal effectors, bacterial effectors, and all, the size of functional clusters (FCs) 730 

generated by MEANtools is calculated and shown in a boxplot across four decay rates. 731 

The FCs size is stable across treatment combinations, with a slight tendency for 732 

smaller FCs when all treatments are considered. FCs size increases with decay rate.  733 

 734 

Supplementary Figure 8: Use of coexpression edges to merge and prioritize FCs. 735 

Green edges represent coexpression networks and blue edges represent gene-736 

metabolite networks of FCs. Colored nodes represent biosynthetic genes annotated 737 

from seven tomato pathways. Coexpression was detected across all treatment 738 

dimensions. Coexpression networks and FCs were created with a mutual rank metric 739 

and ClusterONE clustering with a decay rate of 10.   FCs from the α-tomatine pathway 740 

are connected thanks to coexpression edges between the  genes GAME12 741 

transaminase (Solyc12g006470), and 2-oxoglutarate-dependent dioxygenase 742 

GAME11 (Solyc07g043420), and GAME17 (UDP-glucosyltransferase) 743 

(Solyc07g043480) and GAME1 (UDP-galactosyltransferase) (Solyc07g043490) . Two 744 

genes associated with the biosynthesis of 4-coumarate CoA ligase (4CL) were also 745 

connected by coexpression edges in the hydroxy cinnamic acid amide (HCAA) 746 

pathway. Merging FCs via coexpression edges between biosynthetic genes was 747 

robust across decay rates 10 and 25, with only the connections belonging to the HCAA 748 

pathways displayed in decay rate 5.   749 
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