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Plants have evolved complex bouquets of specialized natural
products that are utilized in medicine, agriculture, and industry.
Untargeted natural product discovery has benefitted from
growing plant omics data resources. Yet, plant genome
complexity limits the identification and curation of biosynthetic
pathways via single omics. Pairing multi-omics types within ex-
periments provides multiple layers of evidence for biosynthetic
pathway mining. The extraction of paired biological information
facilitates connecting genes to transcripts and metabolites,
especially when captured across time points, conditions and
chemotypes. Experimental design requires specific adaptations
to enable effective paired-omics analysis. Ultimately, metadata
standards are required to support the integration of paired and
unpaired public datasets and to accelerate collaborative efforts
for natural product discovery in the plant research community.
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Introduction
Plants have evolved an extremely diverse and chemically
innovative array of molecules to coordinate environ-
mental and developmental responses. The range of
ecological functions encoded in the structural diversity
of plant specialized metabolites provides a promising yet
underexplored resource for the development of novel
drugs, biofuels, agrochemicals, and targets for crop
improvement. However, sourcing plant specialized me-
tabolites is constrained by the need to access the source

species, cultivate non-crop plants, and purify low-
abundant plant extracts that are only conditionally
induced, and often compete with primary metabolism
[1]. Consequently, the chemical library of the plant
specialized metabolome has remained elusive.

Elucidating the biosynthesis of plant specialized me-
tabolites is a promising avenue for discovering plant
natural products [2e4] and making them accessible for
efficient production [5,6]. Initially, biosynthetic path-
ways were characterized via targeted metabolite quan-
tification on mass spectrometry platforms to identify

pathway intermediates [7,8] or targeted transcriptomics
by “bait”-gene co-expression analysis [9] to find addi-
tional candidate genes potentially involved in the
pathway. Based on this, prioritized lists of candidate
genes could then be functionally tested using in vitro
screens or transient in planta expression. Alternatively,
untargeted approaches could be used to discover path-
ways independently of previous knowledge of a target
biosynthetic gene or chemical compound of interest.

In bacteria and fungi, untargeted genome mining [10]

through the identification of biosynthetic gene clusters
(BGCs) with tools such as antiSMASH [11] resulted in
hundreds of thousands of biosynthetic pathways being
predicted and hundreds being experimentally validated.
More than 30 BGCs have now been experimentally
Current Opinion in Plant Biology 2024, 82:102657
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2 Physiology and metabolism 2024
characterized in plants thanks to a combination of omics
and genome mining strategies such as plantiSMASH
[12e15]. However, gene clustering is not a hallmark
feature of plant genomes and the overall structural
complexity of the plant genomic landscape across poly-
ploidy levels, sub-genomes, and structural re-
arrangements [16,17] requires the integration of mul-
tiple data resources beyond genomic location to facili-

tate untargeted pathway discovery.

Recently, pairing multiple omics datasets by matching
experimental setups and metadata across samples for
different omics types has proven to be a powerful
approach for plant natural product discovery by facili-
tating the detection of patterns that could not be
captured by combining single-omics datasets [18e21].
For example, the falcarindiol pathway in tomato was
discovered using paired-omics data by identifying
metaboliteetranscript associations across seven

different conditions that were each profiled across three
time points [20]. There are several advantages of a
paired-omics setup. First, paired dimensions, such as
time points, tissue, conditions, and species, allow
consistently extracting and associating biologically
relevant signals across different omics data types.
Second, pairing information across omics layers can
clarify causal relationships between genes, transcripts,
and metabolites, which can uncover genes underlying
the production of certain molecules. Third, pairing
omics layers can enhance the mining of public single-

omics datasets, by allowing for the propagation of in-
sights to other omics layers, facilitated by gene-
transcript-metabolite links identified in the paired
data. Ultimately, the integration of species phylogeny
enables the exploration of functional relationships be-
tween omics data types, strengthening biological signal
with evidence from orthology in biosynthetic pathways.

Here, we discuss experimental practices, data standards,
and analysis strategies for generating paired-omics data
that can support identifying, validating, and prioritizing
natural product biosynthetic pathways in plants, and

consider how data sharing and metadata standards can
expand the utility of these datasets through integration
with public datasets.
Designing experiments for plant omics data
integration
Depending on the underlying research question,
different omics data types can provide distinct layers of
evidence for plant pathway discovery. Additionally,

practical feasibility and cost-effectiveness are also
fundamental considerations for experimental design. For
the discovery of specialized biosynthetic pathways,
three molecular omics data types are most frequently
considered: genomics, transcriptomics, and metab-
olomics [14]. For modelling spatial and temporal
Current Opinion in Plant Biology 2024, 82:102657
metabolic fluxes and metabolic signaling, single-cell
multi-omics and spatial omics may provide an addi-
tional dimension for data integration to account for
tissue- and cell-type specific pathway modules [21].

Unlike genomics data, other omics data types require
contextualized interpretation based on experimental
conditions. Consequently, integration of plant tran-

scriptomics and metabolomics data is highly sensitive to
variation in experimental setups. Regulation of special-
ized metabolite biosynthesis in plants follows specific
patterns in vegetative and generative stage, tissue type,
and ontogeny [22,23]. Notably, mimicking complex
biotic and abiotic stresses for elicitation of specialized
compound biosynthesis demands careful consideration
of environmental conditions, e.g., in the greenhouse or
climate chamber [24]. To link biosynthetic pathway
intermediates to transcript abundance, multiple time
points can be included to account for delayed detection

of biosynthetic products following transcriptional
signaling [14]. Additionally, sampling different tissues
and developmental stages can help to distinguish be-
tween pathways whose expression is triggered by the
same stresses. Further signal can be captured by sam-
pling different genotypes and associated chemotypes of
the species of interest. However, combinatorial limits
are easily reached, as each additional design parameter
multiplies the number of samples required, also
considering sufficient replicates (Figure 1a). Yet, we
believe that, to be able to capture sufficient variation in

gene expression and metabolite production within a
standardized setup to facilitate large-scale (semi-)
automated pathway discovery, the field should invest in
generating more paired-omics datasets that cover all
possible dimensions within the same experiment,
including diversity in species, tissues, conditions and
time points. Designing prototypical paired plant omics
experiments covering a carefully selected minimal set of
tissues, conditions and time points sufficient for
distinguishing between pathways in a cost-effective
manner should be explored and standardized to also
streamline cross-dataset integration.

Although requirements differ regarding most relevant
conditions and time points for the biological question at
hand, aligning experimental setups may potentiate
interoperability of omics data across studies. Further,
standardization of sampling strategies (Figure 1b) and
downstream processing workflows (Figure 1c) may
enhance the interoperability of extracted features as
biological signals (Figure 1d). For integrative omics,
material for extraction of metabolites, RNA, or DNA
originates either from a pool of the same biological ma-

terial (split samples), from independent replicates from
the same batch, or from independent experiments or
batches [25]. Performing transcriptomics and meta-
bolomics on material deriving from exactly the same
samples is ideal for omics data integration. However,
www.sciencedirect.com
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Figure 1

Paired-omics data generation and analysis: starting from experimental design, via sampling and data processing, to paired-omics analysis.
a) Experimental design for omics data generation. Metadata for environmental conditions and organism, and dimensions of combinatorial setup, including
treatments and time points. b) Sampling. Raw data acquisition, including sampling, pre-processing protocols, instrument type, and batches in sample
analysis. c) Data preprocessing protocols, including workflows for processing software, integrative pipelines for large-scale processing, and version
control of respective workflows and pipelines for data normalization. d) Analysis of paired-omics data. Extraction of biological signal across omics layers
via matching conditions in the experimental design. Pathway reconstruction through the integration of genomics, transcriptomics, and metabolomics.
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required amounts of sampling material are often un-
available for a combined omics analysis on the same
individual plant, depending on plant species, develop-
mental stage, tissue, and conditions under study. For
bulk mRNA sequencing, the extraction of plant RNA

typically requires fresh input material below 50 mg,
while for LC-MS/MS in semi-quantitative analysis,
state-of-the-art protocols were optimized for 100 mg
fresh weight [26]. The addition of Quality Control
samples further increases the total amount of plant
tissue material required for combined transcriptomics
and metabolomics analysis. For replicate-matched sam-
pling, expected variation between samples limits the
integration of distinct omics data types, and covariation
across replicates cannot be utilized as signal to connect
transcripts to metabolites. Nonetheless, destructive

sampling displays an inevitable barrier for omics time-
series experiments, since mechanical damage can dras-
tically alter hormone signaling and hence specialized
compound biosynthesis [27]. All in all, trade-offs be-
tween feasibility and optimality will therefore always
need to be navigated.
Analyzing paired-omics data
Paired-omics data analysis aims to combine comple-
mentary knowledge from each omics layer, thereby
detecting biologically relevant patterns encompassing

single omics and experimental dimensions in the paired
design. When performing feature selection or extraction
in multi-omics studies, early integration by
www.sciencedirect.com
concatenating datasets (followed by, e.g., clustering to
identify combined groups of co-abundant metabolites
and transcripts) can overcome data multicollinearity and
feature redundancy. In contrast, separate processing of
single omics (e.g., first identifying coexpression modules

and then linking them to metabolites) can better handle
signal-to-noise ratio and data imbalances in untargeted
datasets [28]. Paired-omics integration performs feature
extraction and selection in overlapping conditions,
thereby targeting multicollinearity and noise reduction
while preserving the most prominent global features and
relevant interactions between omics layers.

Correlation of untargeted metabolomics and tran-
scriptomics has been successfully employed as a paired
integration strategy that leverages the guilt-by-

association principle between metabolite abundance
and transcript co-expression across elicitation condi-
tions, combined with evidence from gene clustering
[20] or genomics [18]. Similarly, tissue-specific gene
expression patterns and single-cell metabolomics have
been used to identify candidate genes for the produc-
tion of tissue-specific metabolites [29], such as mono-
terpene indole alkaloids in Catharanthus [21]. Matching
experimental conditions across species could further
substantiate predictions thanks to the identification of
evolutionarily conserved co-expression modules that

indicate likely functional orthology of pathway genes,
which led to the identification of biosynthetic modules
for alkaloids [30], aliphatic glucosinolates [31], and
benzoxazinoids [19]. Such coexpression patterns can be
Current Opinion in Plant Biology 2024, 82:102657
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combined with molecular networking to extend the
gene space for tissue and cell-type specific data inte-
gration across species, as shown in bacteria [32] and
plants [33]. Paired-omics time series profiling can also
clarify dynamic regulation and dynamic inference of
gene regulatory networks [34], as reported in immune
signaling in Arabidopsis thaliana [35] and other Brassica-
ceae [36]. Tools have been developed to capture multi-

omics patterns across spatialetemporal variation, such
as mammalian organogenesis via MEFISTO [37], but
their use has not been reported in plants.

Recently, machine learning approaches beyond linear
correlation proved successful to uncover biologically
relevant multi-omics trends in human studies [38e41].
Across kingdoms, enrichment analytics have been used
in learning thanks to epigenomes [37], regulomes [42],
reactomes [43,44], and plant proteomes [45]. In other
organisms, interpretable deep learning methods have

been developed to drive knowledge-driven feature se-
lection in multi-omics datasets [46,47]. Further, tools for
visual analytics across data modalities are available to
support the interpretation of complex multi-omics pat-
terns, with examples of applications in human studies
[48e50]. The latest approaches for multi-omics analysis
have yet to be applied to pilot plant natural product
discovery in a paired-omics setting, due to the scarcity of
paired-omics studies, linked high-quality metadata, and
characterized biosynthetic pathways for validation.
Harnessing the potential of public plant
omics data
While the generation of paired-omics datasets is poised
to accelerate pathway discovery in plants in the near
Figure 2

Biocuration for data integration via paired-omics data supports a collab
datasets act as anchor points for the alignment of additional public data resou
species. b) Data integration of genomics, transcriptomics, and metabolomics
and properties according to levels of metadata ontologies. c) Creating a comm
tools, and supporting a collaborative effort for discovering and annotating pla
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future, there exists significant potential to leverage the
vast body of publicly available single-omics data. Indeed,
single and paired-omics datasets have the potential to
mutually inform and enhance each other. For instance,
single omics can be used to enhance omics data pairing.
Alternatively, large-scale single-omics datasets can
identify expression modules or families of chemically or
ecologically related molecules, thereby increasing the

statistical power for linking genes to molecules in paired
datasets. Conversely, predicted links between genes and
metabolites from paired studies could enhance the
functional interpretation of single-omics datasets. Pro-
totypical paired-omics studies can thus act as anchor
points for routinely pairing further layers of multi or
single omics (Figure 2a).

Standardization and harmonization of public datasets
facilitate creating communities around data generation
to pool insights, as successfully practiced in the GNPS

metabolomics community platform [51]. Moreover,
reusing public datasets also enables building or bench-
marking tools without having to generate original data-
sets. The newly developed tool plantMASST [52],
implemented within GNPS [51], automates spectral
library searches and direct metabolite annotation
including their taxonomic distribution. Re-use and re-
analysis of existing datasets on the MassIVE platform
via REDU [53] enables implementation and comparison
of computational analysis software, and integration into
modular workflows. At the same time, integration of

independent datasets requires alignment of metadata,
which currently still poses a major challenge for molec-
ular omics. Recently, a pan-repository scale approach
based on harmonization of metadata and standardization
of identifiers across platforms showcased the potential
orative effort for plant natural product discovery. a) Paired-omics
rces of multi and single-omics datasets, including phylogenetically related
data via queryable knowledge graphs, connecting repository data entries
unity for developing multi-omics tools, building on and linking single-omics
nt natural products.

www.sciencedirect.com
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of leveraging existing data across multiple repositories,
including GNPS [51], MetaboLights [54], and Metab-
olomics Workbench [55]. Specific metadata structures
of single omics include gene, transcript, and protein IDs,
and metabolite representations (SMILES or InchIkeys),
while common metadata defines categories such as
sample type, conditions, extraction method and tissue
type (Figure 2b). Although availability of metadata

across repositories plays a pivotal role in dimensionality
reduction for omics integration [56], improvements in
metadata structure standardization are mostly limited to
individual omics data types [57e59]. Employing exist-
ing minimum information standards for common meta-
data across omics types may provide a common structure
to bridge repositories and facilitate effective cross-
omics analyses.

Suitable experimental metadata ontologies are provided
by the recently updated Planteome knowledgebase as

Plant Ontology (PO) and Plant Experimental Condi-
tions Ontology (PECO) terms [60,61]. PECO terms are
integrated into omics databases, such as The Arabi-
dopsis Information Resource (TAIR), with options for
querying by PO and PECO hierarchies [60]. Further-
more, the online tool Annotare (https://www.ebi.ac.uk/
fg/annotare) provides standardized metadata submis-
sion and tagging with PO terms [62]. However, PO and
PECO are not yet implemented as ontologies in popular
omics data repositories, such as the NCBI Gene
Expression Omnibus (GEO) or Plant Expression

Omnibus (PEO) [63]. To mine biosynthetic pathways in
microbes, links between metabolomics repositories such
as GNPS-MassIVE [51] and MetaboLights [54] and
(meta)genome assemblies have been successfully
established via metadata ontologies on the Paired omics
Data Platform (PoDP) [64], facilitating automated
geneemetabolite association analysis through tools such
as NPLinker [65]. Altogether, linking identifiers across
omics-type-specific repositories and adopting shared
metadata standards would greatly simplify and facilitate
combined analysis both within and beyond the study of
plant metabolism.
Biocuration for plant natural product
discovery
Collection, curation, and integration of information by
linking properties via biocuration allows to connect data

across omics-specific databases and perform semantic
searches. The fundamental objective to facilitate
machine-readable database structures was already
underlined in the first proposal of the FAIR principles
[66]. For NCBI, E-utilities provide an infrastructure to
effectively fetch data with corresponding crosslinks and
metadata via Entrezpy [67,68]. Bridging omics re-
positories via third level instances has been introduced
recently for metabolomics data [69] for the curation of
queryable knowledge graphs. Linking taxonomic
www.sciencedirect.com
information with generated genomics, transcriptomics,
and metabolomics data could provide a generic structure
for data mining approaches (Figure 2b). Wikidata has
been proposed earlier as linking knowledgebase for life
science data, as it provides entry points for SPARQL
querying, and an infrastructure of metadata ontologies
based on properties [70]. The spectral database LOTUS
[71] is queryable via Wikidata, and integrates taxonomy

with IDs of experimentally validated compounds in
plants [69,71]. For genomics data, WikiGenomes has
been introduced as an integration of data repositories
into Wikidata, but is limited to prokaryotic organisms
[72]. Other integrative knowledge databases such as
RAMP-DB [73] and the Brassica napus multi-omics
database BnIR [74] are curated from multiple external
data sources, such as KEGG and WikiPathways.

Building up on repository-scale integration, omics data
generation can drive insights across the tree of life.

Paired-omics data communities could potentially enable
transfer learning approaches in new species or new omics
datatypes by employing biocuration for linking properties
such as taxonomic information (Figure 2b) [75]. In
recent years, publicly available omics data has expanded
beyond model species to encompass broad taxonomic
clades with increasing resolution up to the level of plant
chemotypes. Hence, phylogenetic information allows the
propagation of orthologous relationships from different
species in an automated way, as recently showcased for
transcriptomics [33] and metabolomics data [32,76].

Besides conservation of coexpression (as mentioned
above), the localization of genes within syntenic blocks
can be a powerful method to predict orthologues and, by
proxy, orthologous pathways [77,78]. However, resolving
the overarching species taxonomy is an ongoing challenge
in plant systematics. Recently refined taxonomies such as
in the Brassicaceae plant family [79] are not yet imple-
mented in Wikidata or NCBI taxonomy, and thus require
manual curation. Cross-species enrichment tests can rely
on orthology where data for a species is not available [80];
however, such orthology and paralogy relationships across
plant genomes could be complex to establish correctly.

Nevertheless, integrative omics could provide substantial
insights into evolutionary trajectories of biosynthetic
pathway modules across species phylogenies, with the
potential to propagate annotations and to predict
pathway assembly and stability [30,81]. To automate the
generation of insights across species, plant-specific da-
tabases and in-house solutions with individual server ar-
chitectures, data standards, preferred genome versions,
and manual genome annotation standards should be
discouraged in favor of harmonized standards.
Conclusions & future perspectives
Pairing omics data for the same sample material presents
a powerful approach for targeted as well as untargeted
discovery of specialized biosynthetic pathways in plants.
Current Opinion in Plant Biology 2024, 82:102657
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Further, paired datasets can be used as anchors for the
alignment of additional public data resources and single-
omics datasets to automate hypothesis generation and
support common efforts by the plant research commu-
nity to annotate the plant biosynthetic space. Inte-
grating metadata annotations, creating consistent
ontologies, and propagating their use will be key to
creating living resources that can be powered at

repository-scale to tap into the plant biosynthetic and
biochemical space. The generated hypotheses could be
automatically ranked and prioritized for experimental
validation based on new or prior evidence, chemical
novelty, or relevant chemical properties, thereby accel-
erating collaborative efforts in the plant natural product
discovery community.
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